Hostname: page-component-7c8c6479df-27gpq Total loading time: 0 Render date: 2024-03-29T12:55:24.941Z Has data issue: false hasContentIssue false

Surface modification of L605 by oxygen plasma immersion ion implantation for biomedical applications

Published online by Cambridge University Press:  24 September 2018

Letícia Marin de Andrade
Affiliation:
Laboratory for Biomaterials and Bioengineering, Department of Min.-Met-Materials Eng., and University Hospital Research Center, Laval University, 1065 Ave de la Médecine, Pav. Poulliot - 1745G, Québec City, QC, CanadaG1V 0A6
Carlo Paternoster
Affiliation:
Laboratory for Biomaterials and Bioengineering, Department of Min.-Met-Materials Eng., and University Hospital Research Center, Laval University, 1065 Ave de la Médecine, Pav. Poulliot - 1745G, Québec City, QC, CanadaG1V 0A6
Vanessa Montaño-Machado
Affiliation:
Laboratory for Biomaterials and Bioengineering, Department of Min.-Met-Materials Eng., and University Hospital Research Center, Laval University, 1065 Ave de la Médecine, Pav. Poulliot - 1745G, Québec City, QC, CanadaG1V 0A6
Gianni Barucca
Affiliation:
Department of Materials, Environmental Sciences and Urban Planning, Università Politecnica delle Marche, via Brecce Bianche 12, 60131 Ancona, Italy
Małgorzata Sikora-Jasinska
Affiliation:
Laboratory for Biomaterials and Bioengineering, Department of Min.-Met-Materials Eng., and University Hospital Research Center, Laval University, 1065 Ave de la Médecine, Pav. Poulliot - 1745G, Québec City, QC, CanadaG1V 0A6
Ranna Tolouei
Affiliation:
Laboratory for Biomaterials and Bioengineering, Department of Min.-Met-Materials Eng., and University Hospital Research Center, Laval University, 1065 Ave de la Médecine, Pav. Poulliot - 1745G, Québec City, QC, CanadaG1V 0A6
Stéphane Turgeon
Affiliation:
Laboratory for Biomaterials and Bioengineering, Department of Min.-Met-Materials Eng., and University Hospital Research Center, Laval University, 1065 Ave de la Médecine, Pav. Poulliot - 1745G, Québec City, QC, CanadaG1V 0A6
Diego Mantovani*
Affiliation:
Laboratory for Biomaterials and Bioengineering, Department of Min.-Met-Materials Eng., and University Hospital Research Center, Laval University, 1065 Ave de la Médecine, Pav. Poulliot - 1745G, Québec City, QC, CanadaG1V 0A6
*
Address all correspondence to Diego Mantovani at Diego.Mantovani@gmn.ulaval.ca
Get access

Abstract

Co–Cr alloys, more specifically L605, have superior mechanical properties and high-corrosion resistance, making them suitable materials for cardiovascular application. However, metallic materials for biomedical applications require finely tuned surface properties to improve the material behavior in a physiological environment. Oxygen plasma immersion ion implantation was performed on an L605 alloy, after an electropolishing pre-treatment. The oxidized layer was found to be rich in Co and O, it did not show any trace of Cr, and resulted in nanostructured. The corrosion properties were profoundly changed. Endothelial cells showed high viability after 7 days of contact with some modified surfaces.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Qi, P., Maitz, M.F., and Huang, N.: Surface modifications of cardiovascular materials and implants. Surf. Coat. Technol. 233, 80 (2013).10.1016/j.surfcoat.2013.02.008Google Scholar
2.O'Brien, B., and Carroll, W.: The evolution of cardiovascular stent materials and surfaces in response to clinical drivers: a review. Acta Biomater. 5, 945 (2009).10.1016/j.actbio.2008.11.012Google Scholar
3.Shingledecker, J.P., Glanton, D.B., Martin, R.L., Sparks, B.L., and Swindeman, R.W.: Tensile and Creep-Rupture Evaluation of A New Heat of Haynes Alloy 25; ORNL TM-2006/609; U.S. Dept. of Energy, 2007, p. 197.10.2172/921772Google Scholar
4.Poncin, P., and Proft, J.: Stent tubing: understanding the desired attributes. Medical Device Materials: Proceedings from the Materials & Processes for Medical Devices Conference 2003, 8–10 September 2003; ASM International, University of Michigan: Anaheim, California, 2004.Google Scholar
5.Hildebrand, H.F., and Champy, M.: Biocompatibility of Co-Cr-Ni Alloys, 1st ed. (Springer, NATO ADV SCI I A-LIF, New York, 1985), pp. 185.Google Scholar
6.Haynes, D.R., Crotti, T.N., and Haywood, M.R.: Corrosion of and changes in biological effects of cobalt-chrome alloy and 316L stainless steel prosthetic particles with age. J. Biomed. Mater. Res. 49, 167 (2000).10.1002/(SICI)1097-4636(200002)49:2<167::AID-JBM3>3.0.CO;2-93.0.CO;2-9>Google Scholar
7.Jaganathan, S.K., Supriyanto, E., Murugesan, S., Balaji, A., and Asokan, M.K.: Biomaterials in cardiovascular research: applications and clinical implications. BioMed. Res. Int. 3, 459 (2014).Google Scholar
8.Gadelmawla, E.S., Koura, M.M., Maksoud, T.M.A., Elewa, I.M., and Soliman, H.H.: Roughness parameters. J. Mater. Process. Technol. 123, 133 (2002).10.1016/S0924-0136(02)00060-2Google Scholar
9.Montaño-Machado, V., Noël, C., Chevallier, P., Turgeon, S., Houssiau, L., Pauthe, E., Pireaux, J.-J., and Mantovani, D.: Interaction of phosphorylcholine with fibronectin coatings: surface characterization and biological performances. Appl. Surf. Sci. 396, 1613 (2016).10.1016/j.apsusc.2016.11.224Google Scholar
10.Favre, J., Koizumi, Y., Chiba, A., Fabregue, D., and Maire, E.: Deformation behavior and dynamic recrystallization of biomedical Co-Cr-W-Ni (L-605) alloy. Metall. Mater. Trans. A 44, 2819 (2013).10.1007/s11661-012-1602-xGoogle Scholar
11.Kilner, T., Pilliar, R.M., Weatherly, G.C., and Allibert, C.: Phase identification and incipient melting in a cast Co-Cr surgical implant alloy. J. Biomed. Mater. Res. 16, 63 (1982).10.1002/jbm.820160109Google Scholar
12.Poncin, P., Gruez, B., Missillier, P., Comte-Graz, P., and Proft, J.L.: L605 precipitates and their effects on stent applications, edited by Venugopalan, R. and Wu, M. (Proc. Med. Mat. III, Mater. Process. Med. Dev. Conf., Boston, MA, 2005), p. 85.Google Scholar
13.Yamanaka, K., Mori, M., Kuramoto, K., and Chiba, A.: Development of new Co–Cr–W-based biomedical alloys: effects of microalloying and thermomechanical processing on microstructures and mechanical properties. Mater. Des. 55, 987 (2014).10.1016/j.matdes.2013.10.052Google Scholar
14.Bettini, E., Eriksson, T., Boström, M., Leygraf, C., and Pana, J.: Influence of metal carbides on dissolution behavior of biomedical CoCrMo alloy: SEM, TEM and AFM studies. Electrochim. Acta 56, 9413 (2011).10.1016/j.electacta.2011.08.028Google Scholar
15.Kaeppelin, V., Carrère, M., Torregrosa, F., and Mathieu, G.: Characterisation of an industrial plasma immersion ion implantation reactor with a Langmuir probe and an energy-selective mass spectrometer. Surf. Coat. Technol. 156, 119 (2002).10.1016/S0257-8972(02)00075-0Google Scholar
16.Wang, Y., and Olthoff, J.K.: Ion energy distributions in inductively coupled radio-frequency discharges in argon, nitrogen, oxygen, chlorine, and their mixtures. J. Appl. Phys. 85, 6358 (1999).10.1063/1.370138Google Scholar
17.Nastasi, M., and Mayer, J.W.: Ion Implantation and Synthesis of Materials, 1st ed. (Springer, Springer-Verlag, Berlin Heidelberg, 2006), pp. 263.10.1007/978-3-540-45298-0Google Scholar
18.Ensinger, W.: Low energy ion assist during deposition – an effective tool for controlling thin film microstructure. Instrum. Methods Phys. Res. B. 796, 127 (1997).Google Scholar
19.Suzuki, K., Konishi, K., Nakamura, K., and Sugai, H.: Effects of capacitance termination of the internal antenna in inductively coupled plasma. Plasma Sources Sci. Technol. 9, 199 (2000).10.1088/0963-0252/9/2/313Google Scholar
20.Miller, D.J., Biesinger, M.C., and McIntyre, N.S.: Interactions of CO2 and CO at fractional atmosphere pressures with iron and iron oxide surfaces: one possible mechanism for surface contamination? Surf. Interface Anal. 33, 299 (2002).10.1002/sia.1188Google Scholar
21.Biesinger, M.C., Payne, B.P., Grosvenor, A.P., Lau, L.W.M., Gerson, A.R., and Smart, R.S.C.: Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 257, 2717 (2011).10.1016/j.apsusc.2010.10.051Google Scholar
22.Swami, G.T.K.: Oxidation studies of Co-Cr thin films for use as magnetic media. Appl. Surf. Sci. 21, 151 (1985).10.1016/0378-5963(85)90014-5Google Scholar
23.Stott, F.H., Wood, G.C., and Hobb, M.G.: A comparison of the oxidation behavior of Fe-Cr-AI, Ni-Cr-AI, and Co-Cr-Al alloys. Oxid. Met. 3, 103 (1971).10.1007/BF00603481Google Scholar
24.Behrisch, R.: Sputtering by Particle Bombardment I: Physical Sputtering of Single-Element Solids, 1st ed. (Springer, Berlin, Heidelberg, 1981), pp. 145.10.1007/3-540-10521-2Google Scholar
25.Lutz, J., Díaz, C., García, J.A., Blawert, C., and Mändl, S.: Corrosion behaviour of medical CoCr alloy after nitrogen plasma immersion ion implantation. Surf. Coat. Technol. 205, 3043 (2011).10.1016/j.surfcoat.2010.11.017Google Scholar
26.Suriyaprabha, R., Rajendran, V., Karunakaran, G., and Kannan, N.: Effect of contact angle, zeta potential and particles size on the in vitro studies of Al2O3 and SiO2 nanoparticles. IET Nanobiotechnol. 9, 27 (2015).Google Scholar
27.Permenter, M.G., Dennis, W.E., Sutto, T.E., Jackson, D.A., Lewis, J.A., and Stallings, J.D.: Exposure to cobalt causes transcriptomic and proteomic changes in two rat liver derived cell lines. PLoS One 8, 1 (2013).10.1371/journal.pone.0083751Google Scholar
28.Simonsen, L.O., Harbak, H., and Bennekou, P.: Cobalt metabolism and toxicology-a brief update. Sci. Total Environ. 432, 210 (2012).10.1016/j.scitotenv.2012.06.009Google Scholar