Skip to main content
×
×
Home

Synthesis of nanoparticles in carbon arc: measurements and modeling

  • Shurik Yatom (a1), Alexander Khrabry (a1), James Mitrani (a1), Andrei Khodak (a1), Igor Kaganovich (a1), Vladislav Vekselman (a1), Brent Stratton (a1) and Yevgeny Raitses (a1)...
Abstract

This work presents a study of the region of nanoparticle growth in an atmospheric pressure carbon arc. The nanoparticles are detected using the planar laser-induced incandescence technique. The measurements revealed large clouds of nanoparticles in the arc periphery bordering the region with a high density of diatomic carbon molecules. Two-dimensional computational fluid dynamic simulations of the arc combined with thermodynamic modeling show that this is due to the interplay of the condensation of carbon molecular species and the convection flow pattern. These results show that the nanoparticles are formed in the colder, peripheral regions of the arc and describe the parameters necessary for coagulation.

Copyright
Corresponding author
Address all correspondence to Shurik Yatom at syatom@pppl.gov
Footnotes
Hide All
*

Current address: Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.

Footnotes
References
Hide All
1.Ariyarathna, I.R., Rajakaruna, R.M.P.I., and Nedra Karunaratne, D.: The rise of inorganic nanomaterial implementation in food applications. Food Control 77, 251259 (2017).
2.Dastjerd, R. and Montazer, M.: A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties. Colloids Surf. B 79, 518 (2010).
3.Chu, H., Wei, L., Cui, R., Wang, J., and Li, Y.: Carbon nanotubes combined with inorganic nanomaterials: preparations and applications. Coord. Chem. Rev. 254, 11171134 (2010).
4.Lohse, S.E. and Murphy, C.J.: Applications of colloidal inorganic nanoparticles: from medicine to energy. J. Am. Chem. Soc. 134, 1560715620 (2012).
5.Kim, T. and Hyeon, T.: Applications of inorganic nanoparticles as therapeutic agents. Nanotechnology 25, 012001012015 (2014).
6.Lo Porto, C., Palumbo, F., Palazzoa, G., and Favia, P.: Direct plasma synthesis of nano-capsules loaded with antibiotics. Polym. Chem. 8, 17461749 (2017).
7.Heyse, P., Van Hoeck, A., Roeffaers, M.B.J., Raffin, J.P., Steinbuchel, A., Stoveken, T., Lammertyn, J., Verboven, P., Jacobs, P.A., Hofkens, J., Paulussen, S., and Sels, B.F.: Exploration of atmospheric pressure plasma nanofilm technology for straightforward bio-active coating deposition: enzymes, plasmas and polymers, an elegant synergy. Plasma Process. Polym. 8, 965974 (2011).
8.Koga, K., Dong, X., Iwashita, S., Czarnetzki, U., and Shiratani, M.: Formation of carbon nanoparticle using Ar + CH4 high pressure nanosecond discharges. J. Phys Conf. Ser. 518, 012020012026 (2014).
9.Kortshagen, U., Mohan Sankaran, R., Pereira, R., Girshick, S., Wu, J., and Aydil, E.: Nonthermal plasma synthesis of nanocrystals: fundamental principles, materials, and applications. Chem. Rev. 116, 1106111127 (2016).
10.Rai, A., Park, K., Zhou, L., and Zachariah, M.R.: Understanding the mechanism of aluminum nanoparticle oxidation. Combust. Theor. Model. 10, 843859 (2006).
11.Park, K., Lee, D., Rai, A., Mukherjee, D., and Zachariah, M.R.: Size-resolved kinetic measurements of aluminum nanoparticle oxidation with single particle mass spectrometry. J. Phys. Chem. B 109, 72907299 (2005).
12.Arora, N. and Sharma, N.N.: Arc discharge synthesis of carbon nanotubes: comprehensive review. Diam. Relat. Mater. 50, 135150 (2014).
13.Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 5658 (1991).
14.Ando, Y. and Zhao, X.: Synthesis of carbon nanotubes by arc-discharge method. New Diam. Front. Carbon Technol. 16, 123137 (2006).
15.Iijima, S. and Ichihashi, T.: Single-shell carbon nanotubes of 1-nm diameter. Nature 363, 603606 (1993).
16.Bethune, D., Kiang, C., De Vries, M., Gorman, G., Savoy, R., Vasquez, J., and Beyers, R.: Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363, 605607 (1993).
17.Journet, C., Maser, W.K., Bernier, P., Loiseau, A., Lamy de la Chapelle, M., Lefrant, S., Deniard, P., Leek, R., and Fischerk, J.E.: Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 388, 756759 (1997).
18.Fang, X., Shashurin, A., Teel, G., and Keidar, M.: Determining synthesis region of the single wall carbon nanotubes in arc plasma volume. Carbon N. Y. 107, 273280 (2016).
19.Ng, J. and Raitses, Y.: Self-organizational processes in the carbon arc for nanosynthesis. J. Appl. Phys. 117, 063303063307 (2015).
20.Shashurin, A. and Keidar, M.: Synthesis of 2D materials in arc plasmas. J. Phys. D, Appl. Phys. 48, 314007314016 (2015).
21.Ng, J. and Raitses, Y.: Role of the cathode deposit in the carbon arc for the synthesis of nanomaterials. Carbon N. Y. 77, 8089 (2014).
22.Gökce, B., Amendola, V., and Barcikowski, S.: Opportunities and challenges for laser synthesis of colloids. Chem. Phys. Chem. 18, 983985 (2017).
23.Hu, S., Melton, C., and Mukherjee, D.: A facile route for the synthesis of nanostructured oxides and hydroxides of cobalt using laser ablation synthesis in solution (LASIS). Phys. Chem. Chem. Phys. 16, 2403424044 (2014).
24.Dresselhaus, M.S., Dresselhaus, G., Saito, R., and Jorio, A.: Raman spectroscopy of carbon nanotubes. Phys. Rep. 409, 4749 (2005).
25.Peña-Álvarez, M., del Corro, E., Langua, F., Baonza, V.G., and Taravillo, M.: Morphological changes in carbon nanohorns under stress: a combined Raman spectroscopy and TEM study. RSC Adv. 6, 4954349550 (2016).
26.Ferrari, A.C. and Robertson, J.: Raman spectroscopy of amorphous, nanostructures, diamond-like carbon, and nanodiamond. Philos. Trans. R. Soc. Lond. A 362, 24772512 (2004).
27.Saito, Y., Okuda, M., and Koyama, T.: Carbon nanocapsules and single-wall nanotubes formed by arc evaporation. Surf. Rev. Lett. 3, 863867 (1996).
28.Williams, K., Tachibana, M., Allen, J., Grigorian, L., Cheng, S., Fang, S., Sumanasekera, G.U., Loper, A.L., Williams, J.H., and Eklund, P.C.: Single-wall carbon nanotubes from coal. Chem. Phys. Lett. 310, 3137 (1999).
29.Farhat, S., Lamy de La Chapelle, M., Loiseau, A., Scott, C.D., Lefrant, S., Journet, C., and Bernier, P.: Diameter control of single-walled carbon nanotubes using argon–helium mixture gases. J. Chem. Phys. 115, 67526759 (2001).
30.Grebenyukov, V.V., Obraztsova, E.D., Pozharov, A.S., Arutyunyan, N.R., Romeikov, A.A., and Kozyrev, I.A.: Arc-synthesis of single-walled carbon nanotubes in nitrogen atmosphere. Fullerenes Nanotubes Carbon Nanostruct. 16, 330334 (2008).
31.Das, R., Shahnavaz, Z., Eaqub Ali, Md, Moinul Islam, M., and Bee Abd Hamid, S.: Can we optimize arc discharge and laserablation for well-controlled carbon nanotube synthesis? Nanoscale Res. Lett. 11, 510533 (2016).
32.Yatom, S., Bak, J., Khrabryi, A., and Raitses, Y.: Detection of nanoparticles in carbon arc discharge with laser-induced incandescence. Carbon N. Y. 117, 154162 (2017).
33.Gerakis, A., Yeh, Y.W., Shneider, M.N., Mitrani, J.M., Stratton, B.C., and Raitses, Y.: Four-wave-mixing approach to in situ detection of nanoparticles. Phys. Rev. Appl. 9, 014031014039 (2018).
34.Vekselman, V., Feurer, M., Huang, T., Stratton, B., and Raitses, Y.: Complex structure of the carbon arc discharge for synthesis of nanotubes. Plasma Sources Sci. Technol. 26, 065019065030 (2017).
35.Vekselman, V., Khrabry, A., Kaganovich, I., Stratton, B., Selinsky, R.S., and Raitses, Y.: Quantitative imaging of carbon dimer precursor for nanomaterial synthesis in the carbon arc. Plasma Sources Sci. Technol. 27, 025008025021 (2018).
36.Michelsen, H.A., Schulz, C., Smallwood, G.J., and Will, S.: Laser-induced incandescence: particulate diagnostics for combustion, atmospheric, and industrial applications. Prog. Energy Combust. Sci. 51, 248 (2015).
37.Stoffels, W.W., Stoffels, E., Kroesen, G.M.W., and de Hoog, F.J.: Detection of dust particles in the plasma by laser-induced heating. J. Vac. Sci. Technol. A 14, 588594 (1996).
38.Eom, G.S., Park, C.W., Shin, Y.H., Chung, K.H., Park, S., Choe, W., and Hahn, J.W.: Size determination of nanoparticles in low-pressure plasma with laser-induced incandescence technique. Appl. Phys. Lett. 83, 12611263 (2003).
39.van de Wetering, F.M.J.H., Oosterbeek, W., Beckers, J., Nijdam, S., Kovačević, E., and Berndt, J.: Laser-induced incandescence applied to dusty plasmas. J. Phys. D, Appl. Phys. 49, 295206295216 (2016).
40.Menser, J., Daun, K., Dreier, T., and Schulz, C.: Laser-induced incandescence from laser-heated silicon nanoparticles. Appl. Phys. B 122, 277293 (2016).
41.Shneider, M.N.: Carbon nanoparticles in the radiation field of the stationary arc discharge. Phys. Plasmas 22, 073303073307 (2015).
42.Mitrani, J.M., Shneider, M.N., Stratton, B.C., and Raitses, Y.: Modeling thermionic emission from laser-heated nanoparticles. Appl. Phys. Lett. 108, 054101054105 (2016).
43.Gershman, S. and Raitses, Y.: Unstable behavior of anodic arc discharge for synthesis of nanomaterials. J. Phys. D, Appl. Phys. 49, 3452013452010 (2016).
44.Khrabry, A., Kaganovich, I.D., Khodak, A., and Nemchinsky, V.: Self-consistent two-dimensional nonequilibrium numerical simulations of carbon arc discharge, in preparation as of February 2018.
45.Khrabry, A., Kaganovich, I., Nemchinsky, V., and Khodak, A.: Investigation of the short argon arc with hot anode. I. numerical simulations of non-equilibrium effects in the near-electrode regions. Phys. Plasmas 25, 013521013537 (2018).
46.Almeida, N.A., Benilov, M.S., and Naidis, G.V.: Unified modelling of near-cathode plasma layers in high-pressure arc discharges. J. Phys. D, Appl. Phys. 41, 245201245227 (2008).
47.Khrabry, A., Kaganovich, I., Nemchinsky, V., and Khodak, A.: Investigation of the short argon arc with hot anode. II. Analytical model. Phys. Plasmas 25, 013522013542 (2018).
48.Wang, W.Z., Rong, M.Z., Murphy, A.B., Wu, Y., Spencer, J.W., Yan, J.D., and Fang, M.T.C.: Thermophysical properties of carbon-argon and carbon-helium plasmas. J. Phys. D, Appl. Phys. 44, 295202295212 (2011).
49.Pierson, H.O.: Handbook of Carbon, Graphite, Diamond and Fullerenes (Noyes Publications, Park Ridge, NJ, 1993), ISBN: 0-8155-1339-9.
50.Fetterman, A.J., Raitses, Y., and Keidar, M.: Enhanced ablation of small anodes in a carbon nanotube arc plasma. Carbon N. Y. 46, 13221326 (2008).
51.Smirnov, B.M.. Cluster Processes in Gases and Plasmas (Wiley-VCH Verlag GmbH), Weinheim, Germany, 2010, 442 pages.
52.Davari, S.A. and Mukherjee, D.: Kinetic Monte Carlo simulation for homogeneous nucleation of metal nanoparticles during vapor phase synthesis. AIChE J. 64, 1828 (2017).
53.Kappler, P., Ehrburger, P., Lahaye, J., and Donnet, J.-B.: Fine carbon particle formation by carbon-vapor condensation. J. Appl. Phys. 50, 308318 (1979).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Communications
  • ISSN: 2159-6859
  • EISSN: 2159-6867
  • URL: /core/journals/mrs-communications
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
Type Description Title
WORD
Supplementary materials

Yatom et al. supplementary material
Yatom et al. supplementary material 1

 Word (92 KB)
92 KB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed