Skip to main content Accessibility help

Synthetic biology for fibers, adhesives, and active camouflage materials in protection and aerospace

  • Aled D. Roberts (a1) (a2), William Finnigan (a1), Emmanuel Wolde-Michael (a1), Paul Kelly (a1), Jonny J. Blaker (a2), Sam Hay (a1), Rainer Breitling (a1), Eriko Takano (a1) and Nigel S. Scrutton (a1)...


Synthetic biology has a huge potential to produce the next generation of advanced materials by accessing previously unreachable (bio)chemical space. In this prospective review, we take a snapshot of current activity in this rapidly developing area, focusing on prominent examples for high-performance applications such as those required for protective materials and the aerospace sector. The continued growth of this emerging field will be facilitated by the convergence of expertise from a range of diverse disciplines, including molecular biology, polymer chemistry, materials science, and process engineering. This review highlights the most significant recent advances and addresses the cross-disciplinary challenges currently being faced.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Synthetic biology for fibers, adhesives, and active camouflage materials in protection and aerospace
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Synthetic biology for fibers, adhesives, and active camouflage materials in protection and aerospace
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Synthetic biology for fibers, adhesives, and active camouflage materials in protection and aerospace
      Available formats


This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (, which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Address all correspondence to Nigel Scrutton at


Hide All

Equal author contribution



Hide All
1.Cheng, A.A. and Lu, T.K.: Synthetic biology: an emerging engineering discipline. Annu. Rev. Biomed. Eng. 14, 155 (2012).
2.Maynard, A.D.: Navigating the fourth industrial revolution. Nat. Nanotechnol. 10, 1005 (2015).
3.Cameron, D.E., Bashor, C.J., and Collins, J.J.: A brief history of synthetic biology. Nat. Rev. Microbiol. 12, 381 (2014).
4.Hughes, R.A. and Ellington, A.D.: Synthetic DNA synthesis and assembly: putting the synthetic in synthetic biology. Cold Spring Harb. Perspect. Biol. 9, a023812 (2017).
5.Smanski, M.J., Zhou, H., Claesen, J., Shen, B., Fischbach, M.A., and Voigt, C.A.: Synthetic biology to access and expand nature's chemical diversity. Nat. Rev. Microbiol. 14, 135 (2016).
6.Currin, A., Swainston, N., Day, P.J., and Kell, D.B.: Synthetic biology for the directed evolution of protein biocatalysts: navigating sequence space intelligently. Chem. Soc. Rev. 44, 1172 (2015).
7.Ro, D.K., Paradise, E.M., Quellet, M., Fisher, K.J., Newman, K.L., Ndungu, J.M., Ho, K.A., Eachus, R.A., Ham, T.S., Kirby, J., Chang, M.C.Y., Withers, S.T., Shiba, Y., Sarpong, R., and Keasling, J.D.: Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440, 940 (2006).
8.Dormitzer, P.R.: Rapid production of synthetic influenza vaccines. In Influenza Pathogenesis and Control Volume II, edited by Oldstone, M.B.A. and Compans, R.W. (Springer International Publishing, Cham, Switzerland, 2015) pp. 237273.
9.Fraatz, M.A., Berger, R.G., and Zorn, H.: Nootkatone—a biotechnological challenge. Appl. Microbiol. Biotechnol. 83, 35 (2009).
10.Kadim, I.T., Mahgoub, O., Baqir, S., Faye, B., and Purchas, R.: Cultured meat from muscle stem cells: a review of challenges and prospects. J. Integr. Agric. 14, 222 (2015).
11.Check Hayden, E.: Synthetic-biology firms shift focus. Nat. News 505, 598 (2014).
12.Li, M. and Borodina, I.: Application of synthetic biology for production of chemicals in yeast Saccharomyces cerevisiae. FEMS Yeast Res. 15, 1 (2015).
13.Jullesson, D., David, F., Pfleger, B., and Nielsen, J.: Impact of synthetic biology and metabolic engineering on industrial production of fine chemicals. Biotechnol. Adv. 33, 1395 (2015).
14.Carothers, J.M., Goler, J.A., and Keasling, J.D.: Chemical synthesis using synthetic biology. Curr. Opin. Biotechnol. 20, 498 (2009).
15.Service, R.F.: Spinning spider silk into startup gold. doi:10.1126/science.aar2433 (2017).
16.Flores Bueso, Y. and Tangney, M.: Synthetic biology in the driving seat of the bioeconomy. Trends Biotechnol. 35, 373 (2017).
17.Carlson, R.H.: Biology is Technology (Harvard University Press, Cambridge, MA, USA, 2010).
18.Yin, Z., Lan, H., Tan, G., Lu, M., Vasilakos, A.V., and Liu, W.: Computing platforms for big biological data analytics: perspectives and challenges. Comput. Struct. Biotechnol. J. 15, 403 (2017).
19.Friedman, D.C. and Ellington, A.D.: Industrialization of biology. ACS Synth. Biol. 4, 1053 (2015).
20.Cheallaigh, A.N., Mansell, D.J., Toogood, H.S., Tait, S., Lygidakis, A., Scrutton, N.S., and Gardiner, J.M.: Chemoenzymatic synthesis of the intermediates in the peppermint monoterpenoid biosynthetic pathway. J. Nat. Prod. 81, 1546 (2018).
21.Dimarco, R.L. and Heilshorn, S.C.: Multifunctional materials through modular protein engineering. Adv. Mater. 24, 3923 (2012).
22.Demirel, M.C., Cetinkaya, M., Pena-Francesch, A., and Jung, H.: Recent advances in nanoscale bioinspired materials. Macromol. Biosci. 15, 300 (2015).
23.Butterfoss, G.L. and Kuhlman, B.: Computer-based design of novel protein structures. Annu. Rev. Biophys. Biomol. Struct. 35, 49 (2006).
24.Hutchison, C.A., Chuang, R.Y., Noskov, V.N., Assad-Garcia, N., Deerinck, T.J., Ellisman, M.H., Gill, J., Kannan, K., Karas, B.J., Ma, L., Pelletier, J.F., Qi, Z.Q., Richter, R.A., Strychalski, E.A., Sun, L., Suzuki, Y., Tsvetanova, B., Wise, K.S., Smith, H.O., Glass, J.I., Merryman, C., Gibson, D.G., and Venter, J.C.: Design and synthesis of a minimal bacterial genome. Science 351, 1414 (2016).
25.Dowling, N.E., Siva Prasad, K., and Narayanasamy, R.: Mechanical Behavior of Materials: Engineering Methods for Deformation, Fracture, and Fatigue (Pearson, Boston, MA, USA, 2013).
26.Le Feuvre, R.A. and Scrutton, N.S.: A living foundry for Synthetic Biological materials: a synthetic biology roadmap to new advanced materials. Synth. Syst. Biotechnol. 3, 105 (2018).
27.Bryksin, A.V., Brown, A.C., Baksh, M.M., Finn, M.G., and Barker, T.H.: Learning from nature––novel synthetic biology approaches for biomaterial design. Acta Biomater. 10, 1761 (2014).
28.Werkmeister, J.A. and Ramshaw, J.A.M.: Recombinant protein scaffolds for tissue engineering. Biomed. Mater. 7, 12002 (2012).
29.Banta, S., Wheeldon, I.R., and Blenner, M.: Protein engineering in the development of functional hydrogels. Annu. Rev. Biomed. Eng. 12, 167 (2010).
30.Pena-Francesch, A., Akgun, B., Miserez, A., Zhu, W., Gao, H., and Demirel, M.C.: Pressure sensitive adhesion of an elastomeric protein complex extracted from squid ring teeth. Adv. Funct. Mater. 24, 6227 (2014).
31.Elvin, C.M., Carr, A.G., Huson, M.G., Maxwell, J.M., Pearson, R.D., Vuocolo, T., Liyou, N.E., Wong, D.C.C., Merritt, D.J., and Dixon, N.E.: Synthesis and properties of crosslinked recombinant pro-resilin. Nature 437, 999 (2005).
32.Vollrath, F. and Porter, D.: Silks as ancient models for modern polymers. Polymer 50, 5623 (2009).
33.Sutherland, T.D., Young, J.H., Weisman, S., Hayashi, C.Y., and Merritt, D.J.: Insect silk: one name, many materials. Annu. Rev. Entomol. 55, 171 (2010).
34.Koeppel, A. and Holland, C.: Progress and trends in artificial silk spinning: a systematic review. ACS Biomater. Sci. Eng. 3, 226 (2017).
35.Turnbull, S. and Reynolds, W.: Mongol Warrior 1200–1350 (Osprey Publishing, Oxford, UK, 2003).
36.Łotysz, S.: Tailored to the times: the story of Casimir Zeglen's silk bullet-proof vest. Arms Armour 11, 164 (2014).
37.Lewis, E.A., Pigott, M.A., Randall, A., and Hepper, A.E.: The development and introduction of ballistic protection of the external genitalia and perineum. J. R. Army Med. Corps 159, 15 (2013).
38.Craig, C.: Spiderwebs and Silk––Tracing Evolution from Molecules to Genes to Phenotypes (Oxford University Press, Oxford, UK, 2003).
39.Brunetta, L. and Craig, C.L.: Spider Silk: Evolution and 400 Million Years of Spinning, Waiting, Snagging, and Mating (Yale University Press, New Haven, CT, USA, 2010).
40.Rising, A. and Johansson, J.: Toward spinning artificial spider silk. Nat. Chem. Biol. 11, 309 (2015).
41.Vollrath, F., Madsen, B., and Shao, Z.: The effect of spinning conditions on the mechanics of a spider's dragline silk. Proc. R. Soc. B Biol. Sci. 268, 2339 (2001).
42.De Araújo, M.: Natural and Man-Made Fibres: Physical and Mechanical Properties (Woodhead Publishing Limited, Cambridge, UK, 2011).
43.Gosline, J.M., Guerette, P.A., Ortlepp, C.S., and Savage, K.N.: The mechanical design of spider silks: from fibroin sequence to mechanical function. J. Exp. Biol. 202, 3295 (1999).
44.Mortimer, B., Guan, J., Holland, C., Porter, D., and Vollrath, F.: Linking naturally and unnaturally spun silks through the forced reeling of Bombyx mori. Acta Biomater. 11, 247 (2015).
45.Hagn, F., Thamm, C., Scheibel, T., and Kessler, H.: pH-dependent dimerization and salt-dependent stabilization of the N-terminal domain of spider dragline silk––implications for fiber formation. Angew. Chemie Int. Ed. 50, 310 (2011).
46.Tokareva, O., Jacobsen, M., Buehler, M., Wong, J., and Kaplan, D.L.: Structure-function-property-design interplay in biopolymers: spider silk. Acta Biomater. 10, 1612 (2014).
47.Keten, S., Xu, Z., Ihle, B., and Buehler, M.J.: Nanoconfinement controls stiffness, strength and mechanical toughness of Β-sheet crystals in silk. Nat. Mater. 9, 359 (2010).
48.Andersson, M., Chen, G., Otikovs, M., Landreh, M., Nordling, K., Kronqvist, N., Westermark, P., Jörnvall, H., Knight, S., Ridderstråle, Y., Holm, L., Meng, Q., Jaudzems, K., Chesler, M., Johansson, J., and Rising, A.: Carbonic anhydrase generates CO2 and H+ that drive spider silk formation via opposite effects on the terminal domains. PLoS Biol. 12, 1 (2014).
49.Heidebrecht, A., Eisoldt, L., Diehl, J., Schmidt, A., Geffers, M., Lang, G., and Scheibel, T.: Biomimetic fibers made of recombinant spidroins with the same toughness as natural spider silk. Adv. Mater. 27, 2189 (2015).
50.Humenik, M., Smith, A.M., Arndt, S., and Scheibel, T.: Data for ion and seed dependent fibril assembly of a spidroin core domain. Data Brief 4, 571 (2015).
51.Eisoldt, L., Hardy, J.G., Heim, M., and Scheibel, T.R.: The role of salt and shear on the storage and assembly of spider silk proteins. J. Struct. Biol. 170, 413 (2010).
52.Andersson, M., Jia, Q., Abella, A., Lee, X.Y., Landreh, M., Purhonen, P., Hebert, H., Tenje, M., Robinson, C.V., Meng, Q., Plaza, G.R., Johansson, J., and Rising, A.: Biomimetic spinning of artificial spider silk from a chimeric minispidroin. Nat. Chem. Biol. 13, 262 (2017).
53.Jaudzems, K., Askarieh, G., Landreh, M., Nordling, K., Hedhammar, M., Jörnvall, H., Rising, A., Knight, S.D., and Johansson, J.: PH-dependent dimerization of spider silk N-terminal domain requires relocation of a wedged tryptophan side chain. J. Mol. Biol. 422, 477 (2012).
54.Gauthier, M., Leclerc, J., Lefèvre, T., Gagné, S.M., and Auger, M.: Effect of pH on the structure of the recombinant C-terminal domain of Nephila clavipes dragline silk protein. Biomacromolecules 15, 4447 (2014).
55.Hagn, F., Eisoldt, L., Hardy, J.G., Vendrely, C., Coles, M., Scheibel, T., and Kessler, H.: A conserved spider silk domain acts as a molecular switch that controls fibre assembly. Nature 465, 239 (2010).
56.Heim, M., Keerl, D., and Scheibel, T.: Spider silk: from soluble protein to extraordinary fiber. Angew. Chemie Int. Ed. 48, 3584 (2009).
57.Braun, F. N. and Viney, C.: Modelling self assembly of natural silk solutions. Int. J. Biol. Macromol. 32, 59 (2003).
58.Chatzi, E. G. and Koenig, J.L.: Morphology and structure of Kevlar fibers: a review. Polym. Plast. Technol. Eng. 26, 229 (1987).
59.Omenetto, F.G. and Kaplan, D.L.: New opportunities for an ancient material. Science 329, 528 (2010).
60.Lewis, R.: Unraveling the weave of spider silk. Bioscience 46, 636 (1996).
61.Tokareva, O., Michalczechen-Lacerda, V.A., Rech, E.L., and Kaplan, D.L.: Recombinant DNA production of spider silk proteins. Microb. Biotechnol. 6, 651 (2013).
62.Hinman, M.B., Jones, J.A., and Lewis, R.V.: Synthetic spider silk: a modular fiber. Trends Biotechnol. 18, 374 (2000).
63.Xu, H.T., Fan, B.L., Yu, S.Y., Huang, Y.H., Zhao, Z.H., Lian, Z.X., Dai, Y.P., Wang, L.L., Liu, Z.L., Fei, J., and Li, N.: Construct synthetic gene encoding artificial spider dragline silk protein and its expression in milk of transgenic mice. Anim. Biotechnol. 18, 1 (2007).
64.Widmaier, D.M., Tullman-Ercek, D., Mirsky, E.A., Hill, R., Govindarajan, S., Minshull, J., and Voigt, C.A.: Engineering the Salmonella type III secretion system to export spider silk monomers. Mol. Syst. Biol. 5, 1 (2009).
65.Vendrely, C. and Scheibel, T.: Biotechnological production of spider-silk proteins enables new applications. Macromol. Biosci. 7, 401 (2007).
66.Hauptmann, V., Weichert, N., Menzel, M., Knoch, D., Paege, N., Scheller, J., Spohn, U., Conrad, U., and Gils, M.: Native-sized spider silk proteins synthesized in planta via intein-based multimerization. Transgenic Res. 22, 369 (2013).
67.Scheller, J. and Conrad, U.: Production of spider silk proteins in transgenic tobacco and potato. Mol. Farm. Plant-made Pharm. Tech. Proteins 19, 171 (2005).
68.Wen, H., Lan, X., Zhang, Y., Zhao, T., Wang, Y., Kajiura, Z., and Nakagaki, M.: Transgenic silkworms (Bombyx mori) produce recombinant spider dragline silk in cocoons. Mol. Biol. Rep. 37, 1815 (2010).
69.Teule, F., Miao, Y.-G., Sohn, B.-H., Kim, Y.-S., Hull, J.J., Fraser, M.J., Lewis, R.V., and Jarvis, D.L.: Silkworms transformed with chimeric silkworm/spider silk genes spin composite silk fibers with improved mechanical properties. Proc. Natl. Acad. Sci. 109, 923 (2012).
70.Ji, D., Niu, B., Yu, Y., Huang, Y., Dong, Q., Li, M., Chen, X., Xu, J., and Tan, A.: Mass spider silk production through targeted gene replacement in Bombyx mori. Proc. Natl. Acad. Sci. 115, 8757 (2018).
71.Xia, X.-X., Qian, Z.-G., Ki, C.S., Park, Y.H., Kaplan, D.L., and Lee, S.Y.: Native-sized recombinant spider silk protein produced in metabolically engineered Escherichia coli results in a strong fiber. Proc. Natl. Acad. Sci. 107, 14059 (2010).
72.Candelas, G.C., Arroyo, G., Carrasco, C., and Dompenciel, R.: Spider silkglands contain a tissue-specific alanine tRNA that accumulates in vitro in response to the stimulus for silk protein synthesis. Dev. Biol. 140, 215 (1990).
73.Jung, H., Pena-Francesch, A., Saadat, A., Sebastian, A., Kim, D.H., Hamilton, R.F., Albert, I., Allen, B.D., and Demirel, M.C.: Molecular tandem repeat strategy for elucidating mechanical properties of high-strength proteins. Proc. Natl. Acad. Sci. USA 113, 6478 (2016).
74.Pena-Francesch, A., Jung, H., Segad, M., Colby, R.H., Allen, B.D., and Demirel, M.C.: Mechanical properties of tandem-repeat proteins are governed by network defects. ACS Biomater. Sci. Eng. 4, 884 (2018).
75.Rising, A., Johansson, J., and Andersson, M.: Engineered spider silk protein and uses thereof. European Patent Application EP3263593(A1) (2016).
76.Magaz, A., Roberts, A.D., Faraji, S., Nascimento, T.R.L., Medeiros, E.S., Zhang, W., Greenhalgh, R.D., Mautner, A., Li, X., and Blaker, J.J.: Porous, aligned, and biomimetic fibers of regenerated silk fibroin produced by solution blow spinning. Biomacromolecules 19, 4542 (2018).
77.Porter, D., Guan, J., and Vollrath, F.: Spider silk: super material or thin fibre? Adv. Mater. 25, 1275 (2013).
78.Bowen, C.H., Dai, B., Sargent, C.J., Bai, W., Ladiwala, P., Feng, H., Huang, W., Kaplan, D.L., Galazka, J.M., and Zhang, F.: Recombinant spidroins fully replicate primary mechanical properties of natural spider silk. Biomacromolecules 19, 3853 (2018).
79.Fay, P.A.: Adhesive Bonding: Science, Technology and Applications (Woodhead Publishing, Cambridge, UK, 2005).
80.Smith, A.M.: Biological Adhesives, 2nd ed. (Springer International Publishing, Cham, Switzerland, 2006).
81.Hwang, D.S., Yoo, H.J., Jun, J.H., Moon, W.K., and Cha, H.J.: Expression of functional recombinant mussel adhesive protein Mgfp-5 in Escherichia coli. Appl. Environ. Microbiol. 70(, 3352 (2004).
82.Strausberg, R.L. and Link, R.P.: Protein-based medical adhesives. Trends Biotechnol. 8, 53 (1990).
83.Lee, B.P., Messersmith, P.B., Israelachvili, J.N., and Waite, J.H.: Mussel-inspired adhesives and coatings. Annu. Rev. Mater. Res. 41, 99 (2011).
84.Molitor, P., Barron, V., and Young, T.: Surface treatment of titanium for adhesive bonding to polymer composites: a review. Int. J. Adhes. Adhes. 21, 129 (2001).
85.Klement, R., Rolc, S., Mikulikova, R., and Krestan, J.: Transparent armour materials. J. Eur. Ceram. Soc. 28, 1091 (2008).
86.Waite, J.H., Andersen, N.H., Jewhurst, S., and Sun, C.: Mussel adhesion: finding the tricks worth mimicking. J. Adhes. 81, 297 (2005).
87.Kord Forooshani, P. and Lee, B.P.: Recent approaches in designing bioadhesive materials inspired by mussel adhesive protein. J. Polym. Sci. Part A Polym. Chem. 55, 9 (2017).
88.Rodriguez, N.R.M., Das, S., Kaufman, Y., Israelachvili, J.N., and Waite, J.H.: Interfacial pH during mussel adhesive plaque formation. Biofouling 31, 221 (2015).
89.Sone, E.D.: Interfacial phenomena in marine and freshwater mussel adhesion. In Biological Adhesives, 2nd ed. edited by Smith, AM (Springer International Publishing, Cham, Switzerland, 2016) pp. 129151.
90.Lee, H., Scherer, N.F., and Messersmith, P.B.: Single-molecule mechanics of mussel adhesion. Proc. Natl. Acad. Sci. 103, 12999 (2006).
91.Holten-Andersen, N., Mates, T.E., Toprak, M.S., Stucky, G.D., Zok, F.W., and Waite, J.H.: Metals and the integrity of a biological coating: the cuticle of mussel byssus. Langmuir 25, 3323 (2009).
92.Liu, Y., Meng, H., Messersmith, P.B., Lee, B.P., and Dalsin, J.L.: Biomimetic adhesives and coatings based on mussel adhesive proteins. In Biological Adhesives, 3nd ed. edited by Smith, AM (Springer International Publishing, Cham, Switzerland, 2016), pp. 345378.
93.Yu, J.: Antioxidant is a key factor in mussel protein adhesion. In: Adhesive interactions of mussel foot proteins. Springer Theses (Recognizing Outstanding Ph.D. Research), Springer International Publishing, Cham, Switzerland, 2014, pp. 3142.
94.Zhao, H. and Waite, J.H.: Linking adhesive and structural proteins in the attachment plaque of Mytilus californianus. J. Biol. Chem. 281, 26150 (2006).
95.Petrone, L., Kumar, A., Sutanto, C.N., Patil, N.J., Kannan, S., Palaniappan, A., Amini, S., Zappone, B., Verma, C., and Miserez, A.: Mussel adhesion is dictated by time-regulated secretion and molecular conformation of mussel adhesive proteins. Nat. Commun. 6, 8737 (2015).
96.Hwang, D.S., Zeng, H., Srivastava, A., Krogstad, D.V., Tirrell, M., Israelachvili, J.N., and Waite, J.H.: Viscosity and interfacial properties in a mussel-inspired adhesive coacervate. Soft Matter 6, 3232 (2010).
97.Ahn, B.K., Das, S., Linstadt, R., Kaufman, Y., Martinez-Rodriguez, N.R., Mirshafian, R., Kesselman, E., Talmon, Y., Lipshutz, B.H., Israelachvili, J.N., and Waite, J.H.: High-performance mussel-inspired adhesives of reduced complexity. Nat. Commun. 6, 8663 (2015).
98.Westwood, G., Horton, T.N., and Wilker, J.J.: Simplified polymer mimics of cross-linking adhesive proteins. Macromolecules 40, 3960 (2007).
99.Maugh, K.J., Anderson, D.M., Strausberg, R., Strausberg, S.L., McCandliss, R., Wei, T., and Filpula, D.: Bioadhesives. International Patent Application WO 88/03953(A1) (1988).
100.Strausberg, R.L., Link, R., Filpula, D., Orndorff, S.A., Strausberg, S.L., McCandliss, R., Finkelman, M., Wei, T., and Anderson, D.M.: Development of a microbial system for production of mussel adhesive protein. In Adhesives from Renewable Resources, edited by Hemingway, RW, Conner, AH and Branham, SJ (ACS, Washington, DC, USA, 1989) pp. 453464.
101.Hwang, D.S., Gim, Y., and Cha, H.J.: Expression of functional recombinant mussel adhesive protein type 3A in Escherichia coli. Biotechnol. Prog. 21, 965 (2008).
102.Cha, H.J., Hwang, D.S., and Jung, O.G.: Mussel bioadhesive. US Patent Application 2009/0203883(A1) (2009).
103.Silverman, H.G. and Roberto, F.F.: Cloning and expression of recombinant adhesive protein Mefp-1 of the blue mussel, Mytilus edulis. US Patent US 69,871,70 B1 (2006).
104.Zhong, C., Gurry, T., Cheng, A.A., Downey, J., Deng, Z., Stultz, C.M., and Lu, T.K.: Strong underwater adhesives made by self-assembling multi-protein nanofibres. Nat. Nanotechnol. 9, 858 (2014).
105.Zeng, H., Hwang, D.S., Israelachvili, J.N., and Waite, J.H.: Strong reversible Fe3+-mediated bridging between dopa-containing protein films in water. Proc. Natl. Acad. Sci. 107, 12850 (2010).
106.Hwang, D.S., Sim, S.B., and Cha, H.J.: Cell adhesion biomaterial based on mussel adhesive protein fused with RGD peptide. Biomaterials 28, 4039 (2007).
107.Cloney, R.A. and Brocco, S.L.: Chromatophore organs, reflector cells, iridocytes and leucophores in cephalopods. Integr. Comp. Biol. 23, 581 (1983).
108.Denton, E.J. and Land, M.F.: Mechanism of reflexion in silvery layers of fish and cephalopods. Proc. R. Soc. B Biol. Sci. 178, 43 (1971).
109.Cooper, K.M. and Hanlon, R.T.: Correlation of iridescence with changes in iridophore platelet ultrastructure in the squid Lolliguncula brevis. J. Exp. Biol. 121, 451 (1986).
110.Mirow, S.: Skin color in the squids Loligo pealii and Loligo opalescens – I. Chromatophores. Zeitschrift Zellforsch. Mikroskop. Anat. 125, 143 (1972).
111.Holmes, W.: The colour changes and colour patterns of Sepia officinalis L. Proc. Zool. Soc. London 110, 17 (1940).
112.Hanlon, R.: Cephalopod dynamic camouflage. Curr. Biol. 17, 400 (2007).
113.Barbosa, A., Mathger, L.M., Chubb, C., Florio, C., Chiao, C.-C., and Hanlon, R.T.: Disruptive coloration in cuttlefish: a visual perception mechanism that regulates ontogenetic adjustment of skin patterning. J. Exp. Biol. 210, 1139 (2007).
114.Hanlon, R.T.: The functional organization of chromatophores and iridescent cells in the body patterning of Loligo plei. Malacologia 23, 89 (1982).
115.Deravi, L.F., Magyar, A.P., Sheehy, S.P., Bell, G.R.R., Mäthger, L.M., Senft, S.L., Wardill, T.J., Lane, W.S., Kuzirian, A.M., Hanlon, R.T., Hu, E.L., and Parker, K.K.: The structure-function relationships of a natural nanoscale photonic device in cuttlefish chromatophores. J. R. Soc. Interface 11, 942 (2014).
116.DeMartini, D.G., Ghoshal, A., Pandolfi, E., Weaver, A.T., Baum, M., and Morse, D.E.: Dynamic biophotonics: female squid exhibit sexually dimorphic tunable leucophores and iridocytes. J. Exp. Biol. 216, 3733 (2013).
117.Tao, A.R., DeMartini, D.G., Izumi, M., Sweeney, A.M., Holt, A.L., and Morse, D.E.: The role of protein assembly in dynamically tunable bio-optical tissues. Biomaterials 31, 793 (2010).
118.Izumi, M., Sweeney, A.M., DeMartini, D., Weaver, J.C., Powers, M.L., Tao, A., Silvas, T.V., Kramer, R.M., Crookes-Goodson, W.J., Mäthger, L.M., Naik, R.R., Hanlon, R.T., and Morse, D.E.: Changes in reflectin protein phosphorylation are associated with dynamic iridescence in squid. J. R. Soc. Interface 7, 549 (2010).
119.Levenson, R., DeMartini, D.G., and Morse, D.E.: Molecular mechanism of reflectin's tunable biophotonic control: opportunities and limitations for new optoelectronics. APL Mater. 5, 104801 (2017).
120.Levenson, R., Bracken, C., Bush, N., and Morse, D.E.: Cyclable condensation and hierarchical assembly of metastable reflectin proteins, the drivers of tunable biophotonics. J. Biol. Chem. 291, 4058 (2016).
121.DeMartini, D.G., Krogstad, D.V., and Morse, D.E.: Membrane invaginations facilitate reversible water flux driving tunable iridescence in a dynamic biophotonic system. Proc. Natl. Acad. Sci. 110, 2552 (2013).
122.Hanlon, R.T., Maxwell, M.R., Shashar, N., Loew, E.R., and Boyle, K.L.: An ethogram of body patterning behavior in the biomedically and commercially valuable squid Loligo pealei off Cape Cod, Massachusetts. Biol. Bull. 197, 49 (1999).
123.Crookes, W.J., Ding, L.L., Huang, Q.L., Kimbell, J.R., Horwitz, J., and HcFall-Ngai, M.J.: Reflectins: the unusual proteins of squid reflective tissues. Science 303, 235 (2004).
124.Mathger, L.M.: The role of muscarinic receptors and intracellular Ca2+ in the spectral reflectivity changes of squid iridophores. J. Exp. Biol. 207, 1759 (2004).
125.Kramer, R.M., Crookes-Goodson, W.J., and Naik, R.R.: The self-organizing properties of squid reflectin protein. Nat. Mater. 6, 533 (2007).
126.Phan, L., Walkup, W.G. IV, Ordinario, D.D., Karshalev, E., Jocson, J.M., Burke, A.M., and Gorodetsky, A.A.: Reconfigurable infrared camouflage coatings from a cephalopod protein. Adv. Mater. 25, 5621 (2013).
127.Phan, L., Ordinario, D.D., Karshalev, E., Walkup, W.G. Iv, Shenk, M.A., and Gorodetsky, A.A.: Infrared invisibility stickers inspired by cephalopods. J. Mater. Chem. C 3, 6493 (2015).
128.Qin, G., Dennis, P.B., Zhang, Y., Hu, X., Bressner, J.E., Sun, Z., Crookes-Goodson, W.J., Naik, R.R., Omenetto, F.G., and Kaplan, D.L.: Recombinant reflectin-based optical materials. J. Polym. Sci. Part B Polym. Phys. 51, 254 (2013).
129.Dennis, P.B., Singh, K.M., Vasudev, M.C., Naik, R.R., and Crookes-Goodson, W.J.: Research update: a minimal region of squid reflectin for vapor-induced light scattering. APL Mater. 5, 120701 (2017).
130.Reiter, S., Hülsdunk, P., Woo, T., Lauterbach, M.A., Eberle, J.S., Akay, L.A., Longo, A., Meier-Credo, J., Kretschmer, F., Langer, J.D., Kaschube, M., and Laurent, G.: Elucidating the control and development of skin patterning in cuttlefish. Nature 562, 361 (2018).
131.Adkins, J., Pugh, S., McKenna, R., and Nielsen, D.R.: Engineering microbial chemical factories to produce renewable “biomonomers.” Front. Microbiol. 3, 313 (2012).
132.Mitrea, L., Trif, M., Cătoi, A.F., and Vodnar, D.C.: Utilization of biodiesel derived-glycerol for 1,3-PD and citric acid production. Microb. Cell Fact. 16, 1 (2017).
133.Isikgor, F.H. and Becer, C.R.: Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polym. Chem. 6, 4497 (2015).
134.Sheldon, R.A.: Green and sustainable manufacture of chemicals from biomass: state of the art. Green Chem. 16, 950 (2014).
135.Cervin, M.A., Soucaille, P., and Valle, F.: Process for the biological production of 1,3-propanediol with high yield. United States Patent Application US 2004/0152174(A1) (1991).
136.Luo, Z.W. and Lee, S.Y.: Biotransformation of p-xylene into terephthalic acid by engineered Escherichia coli. Nat. Commun. 8, 1 (2017).
137.Koch, M., Duigou, T., Carbonell, P., and Faulon, J.L.: Molecular structures enumeration and virtual screening in the chemical space with RetroPath2.0. J. Cheminform. 9, 1 (2017).
138.Okabe, M., Lies, D., Kanamasa, S., and Park, E.Y.: Biotechnological production of itaconic acid and its biosynthesis in Aspergillus terreus. Appl. Microbiol. Biotechnol. 84, 597 (2009).
139.Ray, P., Smith, C., Simon, G.P., and Saito, K.: Renewable green platform chemicals for polymers. Molecules 22, 14 (2017).
140.Li, J., Zong, H., Zhuge, B., Lu, X., Fang, H., and Sun, J.: Immobilization of Acetobacter sp. CGMCC 8142 for efficient biocatalysis of 1, 3-propanediol to 3-hydroxypropionic acid. Biotechnol. Bioprocess Eng. 21, 523 (2016).
141.Bozell, J.J., Moens, L., Elliott, D.C., Wang, Y., Neuenscwander, G.G., Fitzpatrick, S.W., Bilski, R.J., and Jarnefeld, J.L.: Production of levulinic acid and use as a platform chemical for derived products. Resour. Conserv. Recycl. 28, 227 (2000).
142.Martin, C.H. and Prather, K.L.J.: High-titer production of monomeric hydroxyvalerates from levulinic acid in Pseudomonas putida. J. Biotechnol. 139, 61 (2009).
143.Pang, X., Zhuang, X., Tang, Z., and Chen, X.: Polylactic acid (PLA): Research, development and industrialization. Biotechnol. J. 5, 1125 (2010).
144.Tsuge, Y., Kawaguchi, H., Sasaki, K., and Kondo, A.: Engineering cell factories for producing building block chemicals for bio-polymer synthesis. Microb. Cell Fact. 15, 1 (2016).
145.Okino, S., Suda, M., Fujikura, K., Inui, M., and Yukawa, H.: Production of D-lactic acid by Corynebacterium glutamicum under oxygen deprivation. Appl. Microbiol. Biotechnol. 78, 449 (2008).
146.Tsuji, H. and Ikada, Y.: Stereocomplex formation between enantiomeric poly(lactic acid)s. XI. Mechanical properties and morphology of solution-cast films. Polymer. 40, 6699 (1999).
147.BioAmber Inc. Available at: (accessed November 1, 2018).
148.Polen, T., Spelberg, M., and Bott, M.: Toward biotechnological production of adipic acid and precursors from biorenewables. J. Biotechnol. 167, 75 (2013).
149.Deng, Y. and Mao, Y.: Production of adipic acid by the native-occurring pathway in Thermobifida fusca B6. J. Appl. Microbiol. 119, 1057 (2015).
150.Schneider, J. and Wendisch, V.F.: Biotechnological production of polyamines by bacteria: recent achievements and future perspectives. Appl. Microbiol. Biotechnol. 91, 17 (2011).
151.Qian, Z.G., Xia, X.X., and Lee, S.Y.: Metabolic engineering of Escherichia coli for the production of cadaverine: a five carbon diamine. Biotechnol. Bioeng. 108, 93 (2011).
152.Wang, J., Lu, X., Ying, H., Ma, W., Xu, S., Wang, X., Chen, K., and Ouyang, P.: A novel process for cadaverine bio-production using a consortium of two engineered Escherichia coli. Front. Microbiol. 9, 1 (2018).
153.Kempinski, C., Jiang, Z., Bell, S., and Chappell, J.: Metabolic engineering of higher plants and algae for isoprenoid production. Adv. Biochem. Eng. Biotechnol. 148, 161 (2015).
154.Leferink, N.G.H., Jervis, A.J., Zebec, Z., Toogood, H.S., Hay, S., Takano, E., and Scrutton, N.S.: A ‘plug and play’ platform for the production of diverse monoterpene hydrocarbon scaffolds in Escherichia coli. ChemistrySelect 1, 1893 (2016).
155.Firdaus, M., Montero De Espinosa, L., and Meier, M.A.R.: Terpene-based renewable monomers and polymers via thiol-ene additions. Macromolecules 44, 7253 (2011).
156.Messiha, H.L., Ahmed, S.T., Karuppiah, V., Suardíaz, R., Ascue Avalos, G.A., Fey, N., Yeates, S., Toogood, H.S., Mulholland, A.J., and Scrutton, N.S.: Biocatalytic routes to lactone monomers for polymer production. Biochemistry 57, 1997 (2018).
157.Anderson, L.A., Islam, M.A., and Prather, K.L.J.: Synthetic biology strategies for improving microbial synthesis of “green” biopolymers. J. Biol. Chem. 293, 5053 (2018).
158.Naqvi, S. and Moerschbacher, B.M.: The cell factory approach toward biotechnological production of high-value chitosan oligomers and their derivatives: an update. Crit. Rev. Biotechnol. 37, 11 (2017).
159.Samain, E., Drouillard, S., Heyraud, A., Driguez, H., and Geremia, R.A.: Gram-scale synthesis of recombinant chitooligosaccharides in Escherichia coli. Carbohydr. Res. 302, 35 (1997).
160.Li, Z., Yang, J., and Loh, X.J.: Polyhydroxyalkanoates: opening doors for a sustainable future. NPG Asia Mater. 8, 265 (2016).
161.Tao, W., Lv, L., and Chen, G.Q.: Engineering Halomonas species TD01 for enhanced polyhydroxyalkanoates synthesis via CRISPRi. Microb. Cell Fact. 16, 1 (2017).
162.Fuller, M.: Applying Synthetic Biology Principles to Increase Biocellulose (BC) Production (CB and I Federal Services, Lawrenceville, 2017).
163.Vincent, J.F.V.: The mechanical design of grass. J. Mater. Sci. 17, 856 (1982).
164.Wegst, U.G.K., Bai, H., Saiz, E., Tomsia, A.P., and Ritchie, R.O.: Bioinspired structural materials. Nat. Mater. 14, 23 (2015).
165.Currey, J.D.: Mechanical properties of mother of pearl in tension. Proc. R. Soc. London Biol. Sci. 196, 443 (1977).
166.Demirel, M.C., Vural, M., and Terrones, M.: Composites of proteins and 2D nanomaterials. Adv. Funct. Mater. 28, 1704990 (2017).
167.Laaksonen, P., Walther, A., Malho, J.M., Kainlauri, M., Ikkala, O., and Linder, M.B.: Genetic engineering of biomimetic nanocomposites: diblock proteins, graphene, and nanofibrillated cellulose. Angew. Chemie Int. Ed. 50, 8688 (2011).
168.Vural, M., Lei, Y., Pena-Francesch, A., Jung, H., Allen, B., Terrones, M., and Demirel, M.C.: Programmable molecular composites of tandem proteins with graphene oxide for efficient bimorph actuators. Carbon 118, 404 (2017).
169.Vural, M., Pena-Francesch, A., Bars-Pomes, J., Jung, H., Gudapati, H., Hatter, C.B., Allen, B.D., Anasori, B., Ozbolat, I.T., Gogotsi, Y., and Demirel, M.C.: Inkjet printing of self-assembled 2D titanium carbide and protein electrodes for stimuli-responsive electromagnetic shielding. Adv. Funct. Mater. 28, 1801972 (2018).
170.Mironov, V., Boland, T., Trusk, T., Forgacs, G., and Markwald, R.R.: Organ printing: computer-aided jet-based 3D tissue engineering. Trends Biotechnol. 21, 157 (2003).
171.Ordinario, D.D., Leung, E.M., Phan, L., Kautz, R., Lee, W.K., Naeim, M., Kerr, J.P., Aquino, M.J., Sheehan, P.E., and Gorodetsky, A.A.: Protochromic devices from a cephalopod structural protein. Adv. Opt. Mater. 5, 1600751 (2017).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Communications
  • ISSN: 2159-6859
  • EISSN: 2159-6867
  • URL: /core/journals/mrs-communications
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed