Skip to main content
×
×
Home

Take a deep breath and digest the material: organoids and biomaterials of the respiratory and digestive systems

  • Briana R. Dye (a1), Tadas Kasputis (a1), Jason R. Spence (a2) (a3) (a4) and Lonnie D. Shea (a1)
Abstract

Human organoid models recapitulate many aspects of the complex composition and function of native organs. One of the main challenges in developing these models is the growth and maintenance of three-dimensional tissue structures and proper cellular organization that enable function. Biomaterials play an important role by providing a defined and tunable three-dimensional environment that is required for complex cellular organization and organoid growth in vitro or in vivo. This review summarizes organoids of the respiratory and digestive system, and the use of biomaterials to improve upon these model systems.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Take a deep breath and digest the material: organoids and biomaterials of the respiratory and digestive systems
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Take a deep breath and digest the material: organoids and biomaterials of the respiratory and digestive systems
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Take a deep breath and digest the material: organoids and biomaterials of the respiratory and digestive systems
      Available formats
      ×
Copyright
Corresponding author
Address all correspondence to Lonnie D. Shea at ldshea@umich.edu
References
Hide All
1.Miller, A.J. and Spence, J.R.: In vitro models to study human lung development, disease and homeostasis. Physiology (Bethesda) 32, 246260 (2017).
2.Aurora, M. and Spence, J.R.: hPSC-derived lung and intestinal organoids as models of human fetal tissue. Dev. Biol. 420, 230238 (2016).
3.Kim, G.-A., Spence, J.R., and Takayama, S.: Bioengineering for intestinal organoid cultures. Curr. Opin. Biotechnol. 47, 5158 (2017).
4.Dye, B.R., Miller, A.J., and Spence, J.R.: How to grow a lung: applying principles of developmental biology to generate lung lineages from human pluripotent stem cells. Curr. Pathobiol. Rep. 4, 4757 (2016).
5.Clevers, H.: Modeling development and disease with organoids. Cell 165, 15861597 (2016).
6.Bartfeld, S. and Clevers, H.: Stem cell-derived organoids and their application for medical research and patient treatment. J. Mol. Med. 95, 729738 (2017).
7.Drost, J. and Clevers, H.: Translational applications of adult stem cell-derived organoids. Development 144, 968975 (2017).
8.Dedhia, P.H., Bertaux-Skeirik, N., Zavros, Y., and Spence, J.R.: Organoid models of human gastrointestinal development and disease. Gastroenterology 150, 10981112 (2016).
9.Fatehullah, A., Tan, S.H., and Barker, N.: Organoids as an in vitro model of human development and disease. Nat. Cell Biol. 18, 246254 (2016).
10.Johnson, J.Z. and Hockemeyer, D.: Human stem cell-based disease modeling: prospects and challenges. Curr. Opin. Cell Biol. 37, 8490 (2015).
11.Huch, M. and Koo, B.-K.: Modeling mouse and human development using organoid cultures. Development 142, 31133125 (2015).
12.Rookmaaker, M.B., Schutgens, F., Verhaar, M.C., and Clevers, H.: Development and application of human adult stem or progenitor cell organoids. Nat. Rev. Nephrol. 11, 546554 (2015).
13.Shamir, E.R. and Ewald, A.J.: Three-dimensional organotypic culture: experimental models of mammalian biology and disease. Nat. Rev. Mol. Cell Biol. 15, 647664 (2014).
14.Sato, T., Stange, D.E., Ferrante, M., Vries, R.G.J., van Es, J.H., Van den Brink, S., Van Houdt, W.J., Pronk, A., Van Gorp, J., Siersema, P.D., and Clevers, H.: Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium. Gastroenterology 141, 17621772 (2011).
15.Sato, T. and Clevers, H.: Growing self-organizing mini-guts from a single intestinal stem cell: mechanism and applications. Science 340, 11901194 (2013).
16.Mahe, M.M., Sundaram, N., Watson, C.L., Shroyer, N.F., and Helmrath, M.A.: Establishment of human epithelial enteroids and colonoids from whole tissue and biopsy. J. Vis. Exp. (97) (2015).
17.Jabaji, Z., Brinkley, G.J., Khalil, H.A., Sears, C.M., Lei, N.Y., Lewis, M., Stelzner, M., Martin, M.G., and Dunn, J.C.Y.: Type I collagen as an extracellular matrix for the in vitro growth of human small intestinal epithelium. PLoS ONE 9, e107814 (2014).
18.Gjorevski, N., Sachs, N., Manfrin, A., Giger, S., Bragina, M.E., Ordóñez-Morán, P., Clevers, H., and Lutolf, M.P.: Designer matrices for intestinal stem cell and organoid culture. Nature 539, 560564 (2016).
19.Spence, J.R., Mayhew, C.N., Rankin, S.A., Kuhar, M.F., Vallance, J.E., Tolle, K., Hoskins, E.E., Kalinichenko, V.V., Wells, S.I., Zorn, A.M., Shroyer, N.F., and Wells, J.M.: Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature 470, 105109 (2011).
20.Wells, J.M. and Spence, J.R.: How to make an intestine. Development 141, 752760 (2014).
21.Finkbeiner, S.R., Freeman, J.J., Wieck, M.M., El-Nachef, W., Altheim, C.H., Tsai, Y.-H., Huang, S., Dyal, R., White, E.S., Grikscheit, T.C., Teitelbaum, D.H., and Spence, J.R.: Generation of tissue-engineered small intestine using embryonic stem cell-derived human intestinal organoids. Biol. Open 4, 14621472 (2015).
22.Watson, C.L., Mahe, M.M., Múnera, J., Howell, J.C., Sundaram, N., Poling, H.M., Schweitzer, J.I., Vallance, J.E., Mayhew, C.N., Sun, Y., Grabowski, G., Finkbeiner, S.R., Spence, J.R., Shroyer, N.F., Wells, J.M., and Helmrath, M.A.: An in vivo model of human small intestine using pluripotent stem cells. Nat. Med. 20, 13101314 (2014).
23.Finkbeiner, S.R., Zeng, X.-L., Utama, B., Atmar, R.L., Shroyer, N.F., and Estes, M.K.: Stem cell-derived human intestinal organoids as an infection model for rotaviruses. mBio 3, e0015912 (2012).
24.Leslie, J.L., Huang, S., Opp, J.S., Nagy, M.S., Kobayashi, M., Young, V.B., and Spence, J.R.: Persistence and toxin production by Clostridium difficile within human intestinal organoids result in disruption of epithelial paracellular barrier function. Infect. Immun. 83, 138145 (2015).
25.Kovbasnjuk, O., Zachos, N.C., In, J., Foulke-Abel, J., Ettayebi, K., Hyser, J.M., Broughman, J.R., Zeng, X.-L., Middendorp, S., de Jonge, H.R., Estes, M.K., and Donowitz, M.: Human enteroids: preclinical models of non-inflammatory diarrhea. Stem Cell Res. Ther. 4(Suppl. 1), S3 (2013).
26.Fujii, M., Shimokawa, M., Date, S., Takano, A., Matano, M., Nanki, K., Ohta, Y., Toshimitsu, K., Nakazato, Y., Kawasaki, K., Uraoka, T., Watanabe, T., Kanai, T., and Sato, T.: A colorectal tumor organoid library demonstrates progressive loss of niche factor requirements during tumorigenesis. Cell Stem Cell 18, 827838 (2016).
27.Cristobal, A., van den Toorn, H.W.P., van de Wetering, M., Clevers, H., Heck, A.J.R., and Mohammed, S.: Personalized proteome profiles of healthy and tumor human colon organoids reveal both individual diversity and basic features of colorectal cancer. Cell Rep. 18, 263274 (2017).
28.Matano, M., Date, S., Shimokawa, M., Takano, A., Fujii, M., Ohta, Y., Watanabe, T., Kanai, T., and Sato, T.: Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids. Nat. Med. 21, 256262 (2015).
29.Drost, J., van Jaarsveld, R.H., Ponsioen, B., Zimberlin, C., van Boxtel, R., Buijs, A., Sachs, N., Overmeer, R.M., Offerhaus, G.J., Begthel, H., Korving, J., van de Wetering, M., Schwank, G., Logtenberg, M., Cuppen, E., Snippert, H.J., Medema, J.P., Kops, G.J.P.L., and Clevers, H.: Sequential cancer mutations in cultured human intestinal stem cells. Nature 521, 4347 (2015).
30.Fumagalli, A., Drost, J., Suijkerbuijk, S.J.E., van Boxtel, R., de Ligt, J., Offerhaus, G.J., Begthel, H., Beerling, E., Tan, E.H., Sansom, O.J., Cuppen, E., Clevers, H., and van Rheenen, J.: Genetic dissection of colorectal cancer progression by orthotopic transplantation of engineered cancer organoids. Proc. Natl. Acad. Sci. USA 114, E2357E2364 (2017).
31.Shimokawa, M., Ohta, Y., Nishikori, S., Matano, M., Takano, A., Fujii, M., Date, S., Sugimoto, S., Kanai, T., and Sato, T.: Visualization and targeting of LGR5(+) human colon cancer stem cells. Nature 545, 187192 (2017).
32.Mizutani, T., Tsukamoto, Y., and Clevers, H.: Oncogene-inducible organoids as a miniature platform to assess cancer characteristics. J. Cell Biol. 216, 15051507 (2017).
33.Jung, P., Sato, T., Merlos-Suárez, A., Barriga, F.M., Iglesias, M., Rossell, D., Auer, H., Gallardo, M., Blasco, M.A., Sancho, E., Clevers, H., and Batlle, E.: Isolation and in vitro expansion of human colonic stem cells. Nat. Med. 17, 12251227 (2011).
34.Dekkers, J.F., Berkers, G., Kruisselbrink, E., Vonk, A., de Jonge, H.R., Janssens, H.M., Bronsveld, I., van de Graaf, E.A., Nieuwenhuis, E.E.S., Houwen, R.H.J., Vleggaar, F.P., Escher, J.C., de Rijke, Y.B., Majoor, C.J., Heijerman, H.G.M., de Winter-de Groot, K.M., Clevers, H., van der Ent, C.K., and Beekman, J.M.: Characterizing responses to CFTR-modulating drugs using rectal organoids derived from subjects with cystic fibrosis. Sci. Transl. Med. 8, 344ra84344ra84 (2016).
35.Vijftigschild, L.A.W., Berkers, G., Dekkers, J.F., Zomer-van Ommen, D.D., Matthes, E., Kruisselbrink, E., Vonk, A., Hensen, C.E., Heida-Michel, S., Geerdink, M., Janssens, H.M., van de Graaf, E.A., Bronsveld, I., de Winter-de Groot, K.M., Majoor, C.J., Heijerman, H.G.M., de Jonge, H.R., Hanrahan, J.W., van der Ent, C.K., and Beekman, J.M.: β2-Adrenergic receptor agonists activate CFTR in intestinal organoids and subjects with cystic fibrosis. Eur. Respir. J. 48, 768779 (2016).
36.van de Wetering, M., Francies, H.E., Francis, J.M., Bounova, G., Iorio, F., Pronk, A., van Houdt, W., Van Gorp, J., Taylor-Weiner, A., Kester, L., McLaren-Douglas, A., Blokker, J., Jaksani, S., Bartfeld, S., Volckman, R., van Sluis, P., Li, V.S.W., Seepo, S., Sekhar Pedamallu, C., Cibulskis, K., Carter, S.L., McKenna, A., Lawrence, M.S., Lichtenstein, L., Stewart, C., Koster, J., Versteeg, R., van Oudenaarden, A., Saez-Rodriguez, J., Vries, R.G.J., Getz, G., Wessels, L., Stratton, M.R., McDermott, U., Meyerson, M., Garnett, M.J., and Clevers, H.: Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell 161, 933945 (2015).
37.Czerwinski, M. and Spence, J.R.: Hacking the matrix. Cell Stem Cell 20, 910 (2017).
38.Hughes, C.S., Postovit, L.M., and Lajoie, G.A.: Matrigel: a complex protein mixture required for optimal growth of cell culture. Proteomics 10, 18861890 (2010).
39.Finkbeiner, S.R. and Spence, J.R.: A gutsy task: generating intestinal tissue from human pluripotent stem cells. Dig. Dis. Sci. 58, 11761184 (2013).
40.Finkbeiner, S.R., Hill, D.R., Altheim, C.H., Dedhia, P.H., Taylor, M.J., Tsai, Y.-H., Chin, A.M., Mahe, M.M., Watson, C.L., Freeman, J.J., Nattiv, R., Thomson, M., Klein, O.D., Shroyer, N.F., Helmrath, M.A., Teitelbaum, D.H., Dempsey, P.J., and Spence, J.R.: Transcriptome-wide analysis reveals hallmarks of human intestine development and maturation in vitro and in vivo. Stem Cell Rep. 4, 11401155 (2015).
41.Tsai, Y.-H., Nattiv, R., Dedhia, P.H., Nagy, M.S., Chin, A.M., Thomson, M., Klein, O.D., and Spence, J.R.: In vitro patterning of pluripotent stem cell-derived intestine recapitulates in vivo human development. Development 144, 10451055 (2017).
42.Mojibian, M., Glavas, M.M., and Kieffer, T.J.: Engineering the gut for insulin replacement to treat diabetes. J. Diab. Investig. 7(Suppl. 1), 8793 (2016).
43.Melton, D.A.: Applied developmental biology: making human pancreatic beta cells for diabetics. Curr. Top. Dev. Biol. 117, 6573 (2016).
44.Quiskamp, N., Bruin, J.E., and Kieffer, T.J.: Differentiation of human pluripotent stem cells into β-cells: potential and challenges. Best Pract. Res. Clin. Endocrinol. Metab. 29, 833847 (2015).
45.Loo, L.S.W., Lau, H.H., Jasmen, J.B., Lim, C.S., and Teo, A.K.K.: An arduous journey from human pluripotent stem cells to functional pancreatic β cells. Diab. Obes. Metab. 355, 1318 (2017).
46.Cryer, P.E.: The barrier of hypoglycemia in diabetes. Diabetes 57, 31693176 (2008).
47.Pambianco, G., Costacou, T., Ellis, D., Becker, D.J., Klein, R., and Orchard, T.J.: The 30-year natural history of type 1 diabetes complications: the Pittsburgh Epidemiology of Diabetes Complications Study experience. Diabetes 55, 14631469 (2006).
48.Barton, F.B., Rickels, M.R., Alejandro, R., Hering, B.J., Wease, S., Naziruddin, B., Oberholzer, J., Odorico, J.S., Garfinkel, M.R., Levy, M., Pattou, F., Berney, T., Secchi, A., Messinger, S., Senior, P.A., Maffi, P., Posselt, A., Stock, P.G., Kaufman, D.B., Luo, X., Kandeel, F., Cagliero, E., Turgeon, N.A., Witkowski, P., Naji, A., O'Connell, P.J., Greenbaum, C., Kudva, Y.C., Brayman, K.L., Aull, M.J., Larsen, C., Kay, T.W.H., Fernandez, L.A., Vantyghem, M.-C., Bellin, M., and Shapiro, A.M.J.: Improvement in outcomes of clinical islet transplantation: 1999–2010. Diab. Care 35, 14361445 (2012).
49.Desai, T. and Shea, L.D.: Advances in islet encapsulation technologies. Nat. Rev. Drug Discov. 54, 2060 (2016).
50.Robertson, R.P.: Islet transplantation a decade later and strategies for filling a half-full glass. Diabetes 59, 12851291 (2010).
51.Kenyon, N.S., Chatzipetrou, M., Masetti, M., Ranuncoli, A., Oliveira, M., Wagner, J.L., Kirk, A.D., Harlan, D.M., Burkly, L.C., and Ricordi, C.: Long-term survival and function of intrahepatic islet allografts in rhesus monkeys treated with humanized anti-CD154. Proc. Natl. Acad. Sci. USA 96, 81328137 (1999).
52.Srinivasan, P., Huang, G.C., Amiel, S.A., and Heaton, N.D.: Islet cell transplantation. Postgrad. Med. J. 83, 224229 (2007).
53.Pagliuca, F.W., Millman, J.R., Gürtler, M., Segel, M., Van Dervort, A., Ryu, J.H., Peterson, Q.P., Greiner, D., and Melton, D.A.: Generation of functional human pancreatic β cells in vitro. Cell 159, 428439 (2014).
54.Pagliuca, F.W., Melton, D.A.: How to make a functional β-cell. Development 140, 24722483 (2013).
55.Rezania, A., Bruin, J.E., Arora, P., Rubin, A., Batushansky, I., Asadi, A., O'Dwyer, S., Quiskamp, N., Mojibian, M., Albrecht, T., Yang, Y.H.C., Johnson, J.D., and Kieffer, T.J.: Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nat. Biotechnol. 32, 11211133 (2014).
56.Rezania, A., Bruin, J.E., Riedel, M.J., Mojibian, M., Asadi, A., Xu, J., Gauvin, R., Narayan, K., Karanu, F., O'Neil, J.J., Ao, Z., Warnock, G.L., and Kieffer, T.J.: Maturation of human embryonic stem cell-derived pancreatic progenitors into functional islets capable of treating pre-existing diabetes in mice. Diabetes 61, 20162029 (2012).
57.Vegas, A.J., Veiseh, O., Gürtler, M., Millman, J.R., Pagliuca, F.W., Bader, A.R., Doloff, J.C., Li, J., Chen, M., Olejnik, K., Tam, H.H., Jhunjhunwala, S., Langan, E., Aresta-Dasilva, S., Gandham, S., McGarrigle, J.J., Bochenek, M.A., Hollister-Lock, J., Oberholzer, J., Greiner, D.L., Weir, G.C., Melton, D.A., Langer, R., and Anderson, D.G.: Long-term glycemic control using polymer-encapsulated human stem cell-derived beta cells in immune-competent mice. Nat. Med. 22, 306311 (2016).
58.Millman, J.R., Xie, C., Van Dervort, A., Gürtler, M., Pagliuca, F.W., and Melton, D.A.: Corrigendum: generation of stem cell-derived β-cells from patients with type 1 diabetes. Nat. Commun. 7, 12379 (2016).
59.Schulz, T.C., Young, H.Y., Agulnick, A.D., Babin, M.J., Baetge, E.E., Bang, A.G., Bhoumik, A., Cepa, I., Cesario, R.M., Haakmeester, C., Kadoya, K., Kelly, J.R., Kerr, J., Martinson, L.A., McLean, A.B., Moorman, M.A., Payne, J.K., Richardson, M., Ross, K.G., Sherrer, E.S., Song, X., Wilson, A.Z., Brandon, E.P., Green, C.E., Kroon, E.J., Kelly, O.G., D'Amour, K.A., and Robins, A.J.: A scalable system for production of functional pancreatic progenitors from human embryonic stem cells. PLoS ONE 7, e37004 (2012).
60.Kim, Y., Kim, H., Ko, U.H., Oh, Y., Lim, A., Sohn, J.-W., Shin, J.H., Kim, H., and Han, Y.-M.: Islet-like organoids derived from human pluripotent stem cells efficiently function in the glucose responsiveness in vitro and in vivo. Sci. Rep. 6, 35145 (2016).
61.Bosco, D., Armanet, M., Morel, P., Niclauss, N., Sgroi, A., Muller, Y.D., Giovannoni, L., Parnaud, G., and Berney, T.: Unique arrangement of alpha- and beta-cells in human islets of Langerhans. Diabetes 59, 12021210 (2010).
62.Gibly, R.F., Zhang, X., Graham, M.L., Hering, B.J., Kaufman, D.B., Lowe, W.L., and Shea, L.D.: Extrahepatic islet transplantation with microporous polymer scaffolds in syngeneic mouse and allogeneic porcine models. Biomaterials 32, 96779684 (2011).
63.Blomeier, H., Zhang, X., Rives, C., Brissova, M., Hughes, E., Baker, M., Powers, A.C., Kaufman, D.B., Shea, L.D., and Lowe, W.L.: Polymer scaffolds as synthetic microenvironments for extrahepatic islet transplantation. Transplantation 82, 452459 (2006).
64.Hlavaty, K.A., Gibly, R.F., Zhang, X., Rives, C.B., Graham, J.G., Lowe, W.L., Luo, X., and Shea, L.D.: Enhancing human islet transplantation by localized release of trophic factors from PLG scaffolds. Am. J. Transplant. 14, 15231532 (2014).
65.Graham, J.G., Zhang, X., Goodman, A., Pothoven, K., Houlihan, J., Wang, S., Gower, R.M., Luo, X., and Shea, L.D.: PLG scaffold delivered antigen-specific regulatory T cells induce systemic tolerance in autoimmune diabetes. Tissue Eng. A 19, 14651475 (2013).
66.Kheradmand, T., Wang, S., Gibly, R.F., Zhang, X., Holland, S., Tasch, J., Graham, J.G., Kaufman, D.B., Miller, S.D., Shea, L.D., and Luo, X.: Permanent protection of PLG scaffold transplanted allogeneic islet grafts in diabetic mice treated with ECDI-fixed donor splenocyte infusions. Biomaterials 32, 45174524 (2011).
67.Gibly, R.F., Zhang, X., Lowe, W.L., and Shea, L.D.: Porous scaffolds support extrahepatic human islet transplantation, engraftment, and function in mice. Cell Transplant. 22, 811819 (2013).
68.Salvay, D.M., Rives, C.B., Zhang, X., Chen, F., Kaufman, D.B., Lowe, W.L., and Shea, L.D.: Extracellular matrix protein-coated scaffolds promote the reversal of diabetes after extrahepatic islet transplantation. Transplantation 85, 14561464 (2008).
69.Pedraza, E., Brady, A.-C., Fraker, C.A., Molano, R.D., Sukert, S., Berman, D.M., Kenyon, N.S., Pileggi, A., Ricordi, C., and Stabler, C.L.: Macroporous three-dimensional PDMS scaffolds for extrahepatic islet transplantation. Cell Transplant. 22, 11231135 (2013).
70.Tuch, B.E., Gao, S.Y., and Lees, J.G.: Scaffolds for islets and stem cells differentiated into insulin-secreting cells. Front Biosci. (Landmark Ed). 19, 126138 (2014).
71.Berman, D.M., Molano, R.D., Fotino, C., Ulissi, U., Gimeno, J., Mendez, A.J., Kenyon, N.M., Kenyon, N.S., Andrews, D.M., Ricordi, C., and Pileggi, A.: Bioengineering the endocrine pancreas: intraomental islet transplantation within a biologic resorbable scaffold. Diabetes 65, 13501361 (2016).
72.Berman, D.M., O'Neil, J.J., Coffey, L.C.K., Chaffanjon, P.C.J., Kenyon, N.M., Ruiz, P., Pileggi, A., Ricordi, C., and Kenyon, N.S.: Long-term survival of nonhuman primate islets implanted in an omental pouch on a biodegradable scaffold. Am. J. Transplant. 9, 91104 (2009).
73.Weizman, A., Michael, I., Wiesel-Motiuk, N., Rezania, A., and Levenberg, S.: The effect of endothelial cells on hESC-derived pancreatic progenitors in a 3D environment. Biomater. Sci. 2, 17061714 (2014).
74.Mao, G.-H., Chen, G.-A., Bai, H.-Y., Song, T.-R., and Wang, Y.-X.: The reversal of hyperglycaemia in diabetic mice using PLGA scaffolds seeded with islet-like cells derived from human embryonic stem cells. Biomaterials 30, 17061714 (2009).
75.Shih, H.P., Wang, A., and Sander, M.: Pancreas organogenesis: from lineage determination to morphogenesis. Annu. Rev. Cell Dev. Biol. 29, 81105 (2013).
76.Broutier, L., Andersson-Rolf, A., Hindley, C.J., Boj, S.F., Clevers, H., Koo, B.-K., and Huch, M.: Culture and establishment of self-renewing human and mouse adult liver and pancreas 3D organoids and their genetic manipulation. Nat. Protoc. 11, 17241743 (2016).
77.Hindley, C.J., Cordero-Espinoza, L., and Huch, M.: Organoids from adult liver and pancreas: stem cell biology and biomedical utility. Dev. Biol. 420, 251261 (2016).
78.Hohwieler, M., Illing, A., Hermann, P.C., Mayer, T., Stockmann, M., Perkhofer, L., Eiseler, T., Antony, J.S., Müller, M., Renz, S., Kuo, C.-C., Lin, Q., Sendler, M., Breunig, M., Kleiderman, S.M., Lechel, A., Zenker, M., Leichsenring, M., Rosendahl, J., Zenke, M., Sainz, B., Mayerle, J., Costa, I.G., Seufferlein, T., Kormann, M., Wagner, M., Liebau, S., and Kleger, A.: Human pluripotent stem cell-derived acinar/ductal organoids generate human pancreas upon orthotopic transplantation and allow disease modelling. Gut 66, 473486 (2017).
79.Ramachandran, S.D., Schirmer, K., Münst, B., Heinz, S., Ghafoory, S., Wölfl, S., Simon-Keller, K., Marx, A., Øie, C.I., Ebert, M.P., Walles, H., Braspenning, J., and Breitkopf-Heinlein, K.: In vitro generation of functional liver organoid-like structures using adult human cells. PLoS ONE 10, e0139345 (2015).
80.Huch, M., Gehart, H., van Boxtel, R., Hamer, K., Blokzijl, F., Verstegen, M.M.A., Ellis, E., van Wenum, M., Fuchs, S.A., de Ligt, J., van de Wetering, M., Sasaki, N., Boers, S.J., Kemperman, H., de Jonge, J., Ijzermans, J.N.M., Nieuwenhuis, E.E.S., Hoekstra, R., Strom, S., Vries, R.R.G., van der Laan, L.J.W., Cuppen, E., and Clevers, H.: Long-term culture of genome-stable bipotent stem cells from adult human liver. Cell 160, 299312 (2015).
81.Takebe, T., Sekine, K., Enomura, M., Koike, H., Kimura, M., Ogaeri, T., Zhang, R.-R., Ueno, Y., Zheng, Y.-W., Koike, N., Aoyama, S., Adachi, Y., and Taniguchi, H.: Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature 499, 481484 (2013).
82.Cai, J., Zhao, Y., Liu, Y., Ye, F., Song, Z., Qin, H., Meng, S., Chen, Y., Zhou, R., Song, X., Guo, Y., Ding, M., and Deng, H.: Directed differentiation of human embryonic stem cells into functional hepatic cells. Hepatology 45, 12291239 (2007).
83.Basma, H., Soto-Gutierrez, A., Yannam, G.R., Liu, L., Ito, R., Yamamoto, T., Ellis, E., Carson, S.D., Sato, S., Chen, Y., Muirhead, D., Navarro-Alvarez, N., Wong, R.J., Roy-Chowdhury, J., Platt, J.L., Mercer, D.F., Miller, J.D., Strom, S.C., Kobayashi, N., and Fox, I.J.: Differentiation and transplantation of human embryonic stem cell-derived hepatocytes. Gastroenterology 136, 990999 (2009).
84.Touboul, T., Hannan, N.R.F., Corbineau, S., Martinez, A., Martinet, C., Branchereau, S., Mainot, S., Strick-Marchand, H., Pedersen, R., Di Santo, J., Weber, A., and Vallier, L.: Generation of functional hepatocytes from human embryonic stem cells under chemically defined conditions that recapitulate liver development. Hepatology 51, 17541765 (2010).
85.Park, Y., Chen, Y., Ordovas, L., and Verfaillie, C.M.: Hepatic differentiation of human embryonic stem cells on microcarriers. J. Biotechnol. 174, 3948 (2014).
86.Si-Tayeb, K., Lemaigre, F.P., and Duncan, S.A.: Organogenesis and development of the liver. Dev. Cell 18, 175189 (2010).
87.Duncan, A.W., Dorrell, C., and Grompe, M.: Stem cells and liver regeneration. Gastroenterology 137, 466481 (2009).
88.Davidson, M.D., Ware, B.R., and Khetani, S.R.: Stem cell-derived liver cells for drug testing and disease modeling. Discov. Med. 19, 349358 (2015).
89.Gissen, P. and Arias, I.M.: Structural and functional hepatocyte polarity and liver disease. J Hepatol 63, 10231037 (2015).
90.Si-Tayeb, K., Noto, F.K., Nagaoka, M., Li, J., Battle, M.A., Duris, C., North, P.E., Dalton, S., and Duncan, S.A.: Highly efficient generation of human hepatocyte-like cells from induced pluripotent stem cells. Hepatology 51, 297305 (2010).
91.Mitaka, T.: The current status of primary hepatocyte culture. Int. J. Exp. Pathol. 79, 393409 (1998).
92.Stoller, J.K. and Aboussouan, L.S.: Alpha1-antitrypsin deficiency. Lancet 365, 22252236 (2005).
93.Skardal, A., Devarasetty, M., Rodman, C., Atala, A., and Soker, S.: Liver-tumor hybrid organoids for modeling tumor growth and drug response in vitro. Ann. Biomed. Eng. 43, 23612373 (2015).
94.McCracken, K.W., Catá, E.M., Crawford, C.M., Sinagoga, K.L., Schumacher, M., Rockich, B.E., Tsai, Y.-H., Mayhew, C.N., Spence, J.R., Zavros, Y., and Wells, J.M.: Modelling human development and disease in pluripotent stem-cell-derived gastric organoids. Nature 516, 400404 (2014).
95.Bartfeld, S., Bayram, T., van de Wetering, M., Huch, M., Begthel, H., Kujala, P., Vries, R., Peters, P.J., and Clevers, H.: In vitro expansion of human gastric epithelial stem cells and their responses to bacterial infection. Gastroenterology 148, 126136. (2015).
96.McCracken, K.W. and Wells, J.M.: Mechanisms of embryonic stomach development. Semin. Cell Dev. Biol. 66, 3642 (2017). doi: 10.1016/j.semcdb.2017.02.004.
97.Odze, R.D.: Barrett esophagus: histology and pathology for the clinician. Nature Reviews Gastroenterol. Hepatol. 6, 478490 (2009).
98.Lisovsky, M. and Srivastava, A.: Barrett esophagus. Surg. Pathol. Clin. 6, 475496 (2013).
99.DeWard, A.D., Cramer, J., and Lagasse, E.: Cellular heterogeneity in the mouse esophagus implicates the presence of a nonquiescent epithelial stem cell population. Cell Rep. 9, 701711 (2014).
100.Mou, H., Vinarsky, V., Tata, P.R., Brazauskas, K., Choi, S.H., Crooke, A.K., Zhang, B., Solomon, G.M., Turner, B., Bihler, H., Harrington, J., Lapey, A., Channick, C., Keyes, C., Freund, A., Artandi, S., Mense, M., Rowe, S., Engelhardt, J.F., Hsu, Y.-C., and Rajagopal, J.: Dual SMAD signaling inhibition enables long-term expansion of diverse epithelial basal cells. Cell Stem Cell 19, 217231 (2016).
101.Green, N., Huang, Q., Khan, L., Battaglia, G., Corfe, B., MacNeil, S., and Bury, J.P.: The development and characterization of an organotypic tissue-engineered human esophageal mucosal model. Tissue Eng. A 16, 10531064 (2010).
102.Ogawa, M., Ogawa, S., Bear, C.E., Ahmadi, S., Chin, S., Li, B., Grompe, M., Keller, G., Kamath, B.M., and Ghanekar, A.: Directed differentiation of cholangiocytes from human pluripotent stem cells. Nat. Biotechnol. 33, 853861 (2015).
103.Zhao, D., Chen, S., Cai, J., Guo, Y., Song, Z., Che, J., Liu, C., Wu, C., Ding, M., and Deng, H.: Derivation and characterization of hepatic progenitor cells from human embryonic stem cells. PLoS ONE 4, e6468 (2009).
104.Dianat, N., Dubois-Pot-Schneider, H., Steichen, C., Desterke, C., Leclerc, P., Raveux, A., Combettes, L., Weber, A., Corlu, A., and Dubart-Kupperschmitt, A.: Generation of functional cholangiocyte-like cells from human pluripotent stem cells and HepaRG cells. Hepatology 60, 700714 (2014).
105.Sampaziotis, F., Cardoso de Brito, M., Madrigal, P., Bertero, A., Saeb-Parsy, K., Soares, F.A.C., Schrumpf, E., Melum, E., Karlsen, T.H., Bradley, J.A., Gelson, W.T.H., Davies, S., Baker, A., Kaser, A., Alexander, G.J., Hannan, N.R.F., and Vallier, L.: Cholangiocytes derived from human induced pluripotent stem cells for disease modeling and drug validation. Nat. Biotechnol. 33, 845852 (2015).
106.Hosey, C.M., Broccatelli, F., and Benet, L.Z.: Predicting when biliary excretion of parent drug is a major route of elimination in humans. AAPS J. 16, 10851096 (2014).
107.Sharifi, M. and Ghafourian, T.: Estimation of biliary excretion of foreign compounds using properties of molecular structure. AAPS J. 16, 6578 (2014).
108.Colombo, C., Battezzati, P.M., Strazzabosco, M., and Podda, M.: Liver and biliary problems in cystic fibrosis. Semin. Liver Dis. 18, 227235 (1998).
109.Cardinale, V., Wang, Y., Carpino, G., Mendel, G., Alpini, G., Gaudio, E., Reid, L.M., and Alvaro, D.: The biliary tree—a reservoir of multipotent stem cells. Nat. Rev. Gastroenterol. Hepatol. 9, 231240 (2012).
110.Tanimizu, N., Miyajima, A., and Mostov, K.E.: Liver progenitor cells develop cholangiocyte-type epithelial polarity in three-dimensional culture. Mol. Biol. Cell 18, 14721479 (2007).
111.Gordillo, M., Evans, T., and Gouon-Evans, V.: Orchestrating liver development. Development 142, 20942108 (2015).
112.Rock, J.R., Onaitis, M.W., Rawlins, E.L., Lu, Y., Clark, C.P., Xue, Y., Randell, S.H., and Hogan, B.L.M.: Basal cells as stem cells of the mouse trachea and human airway epithelium. Proc. Natl. Acad. Sci. USA 106, 1277112775 (2009).
113.Rock, J.R., Randell, S.H., and Hogan, B.L.M.: Airway basal stem cells: a perspective on their roles in epithelial homeostasis and remodeling. Dis. Model. Mech. 3, 545556 (2010).
114.Hackett, T.-L., Shaheen, F., Johnson, A., Wadsworth, S., Pechkovsky, D.V., Jacoby, D.B., Kicic, A., Stick, S.M., and Knight, D.A.: Characterization of side population cells from human airway epithelium. Stem Cells 26, 25762585 (2008).
115.Hong, K.U., Reynolds, S.D., Watkins, S., Fuchs, E., and Stripp, B.R.: Basal cells are a multipotent progenitor capable of renewing the bronchial epithelium. AJPA 164, 577588 (2004).
116.Boers, J.E., Ambergen, A.W., and Thunnissen, F.B.: Number and proliferation of basal and parabasal cells in normal human airway epithelium. Am. J. Respir. Crit. Care Med. 157(Pt 1), 20002006 (1998).
117.Pardo-Saganta, A., Law, B.M., Tata, P.R., Villoria, J., Saez, B., Mou, H., Zhao, R., and Rajagopal, J.: Injury induces direct lineage segregation of functionally distinct airway basal stem/progenitor cell subpopulations. Cell Stem Cell 16, 184197 (2015).
118.Chen, Y.-W., Huang, S.X., de Carvalho, A.L.R.T., Ho, S.-H., Islam, M.N., Volpi, S., Notarangelo, L.D., Ciancanelli, M., Casanova, J.-L., Bhattacharya, J., Liang, A.F., Palermo, L.M., Porotto, M., Moscona, A., and Snoeck, H.-W.: A three-dimensional model of human lung development and disease from pluripotent stem cells. Nat. Cell Biol. 372, 3 (2017).
119.Butler, C.R., Hynds, R.E., Gowers, K.H.C., Lee, D.D.H., Brown, J.M., Crowley, C., Teixeira, V.H., Smith, C.M., Urbani, L., Hamilton, N.J., Thakrar, R.M., Booth, H.L., Birchall, M.A., De Coppi, P., Giangreco, A., O'Callaghan, C., and Janes, S.M.: Rapid expansion of human epithelial stem cells suitable for airway tissue engineering. Am. J. Respir. Crit. Care Med. 194, 156168 (2016).
120.Danahay, H., Pessotti, A.D., Coote, J., Montgomery, B.E., Xia, D., Wilson, A., Yang, H., Wang, Z., Bevan, L., Thomas, C., Petit, S., London, A., LeMotte, P., Doelemeyer, A., Vélez-Reyes, G.L., Bernasconi, P., Fryer, C.J., Edwards, M., Capodieci, P., Chen, A., Hild, M., and Jaffe, A.B.: Notch2 is required for inflammatory cytokine-driven goblet cell metaplasia in the lung. Cell Rep. 10, 239252 (2015).
121.Hild, M. and Jaffe, A.B.: Production of 3-D Airway Organoids From Primary Human Airway Basal Cells and Their Use in High-Throughput Screening (John Wiley & Sons, Inc., Hoboken, NJ, USA, 2007).
122.Kumar, M., Jordan, N., Melton, D., and Grapin-Botton, A.: Signals from lateral plate mesoderm instruct endoderm toward a pancreatic fate. Dev. Biol. 259, 109122 (2003).
123.Chu, H.W., Rios, C., Huang, C., Wesolowska-Andersen, A., Burchard, E.G., O'Connor, B.P., Fingerlin, T.E., Nichols, D., Reynolds, S.D., and Seibold, M.A.: CRISPR–Cas9-mediated gene knockout in primary human airway epithelial cells reveals a proinflammatory role for MUC18. Gene Ther. 22, 822829 (2015).
124.Gao, X., Bali, A.S., Randell, S.H., and Hogan, B.L.M.: GRHL2 coordinates regeneration of a polarized mucociliary epithelium from basal stem cells. J. Cell Biol. 211, 669682 (2015).
125.Barkauskas, C.E., Chung, M.-I., Fioret, B., Gao, X., Katsura, H., and Hogan, B.L.M.: Lung organoids: current uses and future promise. Development 144, 986997 (2017).
126.Konishi, S., Gotoh, S., Tateishi, K., Yamamoto, Y., Korogi, Y., Nagasaki, T., Matsumoto, H., Muro, S., Hirai, T., Ito, I., Tsukita, S., and Mishima, M.: Directed induction of functional multi-ciliated cells in proximal airway epithelial spheroids from human pluripotent stem cells. Stem Cell Rep. 6, 1825 (2016).
127.Gotoh, S., Ito, I., Nagasaki, T., Yamamoto, Y., Konishi, S., Korogi, Y., Matsumoto, H., Muro, S., Hirai, T., Funato, M., Mae, S.-I., Toyoda, T., Sato-Otsubo, A., Ogawa, S., Osafune, K., and Mishima, M.: Generation of alveolar epithelial spheroids via isolated progenitor cells from human pluripotent stem cells. Stem Cell Rep. 3, 394403 (2014).
128.Dye, B.R., Hill, D.R., Ferguson, M.A., Tsai, Y.-H., Nagy, M.S., Dyal, R., Wells, J.M., Mayhew, C.N., Nattiv, R., Klein, O.D., White, E.S., Deutsch, G.H., and Spence, J.R.: In vitro generation of human pluripotent stem cell derived lung organoids. Elife 4, e05098 (2015).
129.Dye, B.R., Dedhia, P.H., Miller, A.J., Nagy, M.S., White, E.S., Shea, L.D., and Spence, J.R.: A bioengineered niche promotes in vivo engraftment and maturation of pluripotent stem cell derived human lung organoids. Elife 5, 3025 (2016).
130.Barkauskas, C.E., Cronce, M.J., Rackley, C.R., Bowie, E.J., Keene, D.R., Stripp, B.R., Randell, S.H., Noble, P.W., and Hogan, B.L.M.: Type 2 alveolar cells are stem cells in adult lung. J. Clin. Invest. 123, 30253036 (2013).
131.Lee, J.-H., Bhang, D.H., Beede, A., Huang, T.L., Stripp, B.R., Bloch, K.D., Wagers, A.J., Tseng, Y.-H., Ryeom, S., and Kim, C.F.: Lung stem cell differentiation in mice directed by endothelial cells via a BMP4-NFATc1-thrombospondin-1 axis. Cell 156, 440455 (2014).
132.Booth, A.J., Hadley, R., Cornett, A.M., Dreffs, A.A., Matthes, S.A., Tsui, J.L., Weiss, K., Horowitz, J.C., Fiore, V.F., Barker, T.H., Moore, B.B., Martinez, F.J., Niklason, L.E., and White, E.S.: Acellular normal and fibrotic human lung matrices as a culture system for in vitro investigation. Am. J. Respir. Crit. Care Med. 186, 866876 (2012).
133.Liu, J.M.H., Zhang, J., Zhang, X., Hlavaty, K.A., Ricci, C.F., Leonard, J.N., Shea, L.D., and Gower, R.M.: Transforming growth factor-beta 1 delivery from microporous scaffolds decreases inflammation post-implant and enhances function of transplanted islets. Biomaterials 80, 1119 (2016).
134.Margul, D.J., Park, J., Boehler, R.M., Smith, D.R., Johnson, M.A., McCreedy, D.A., He, T., Ataliwala, A., Kukushliev, T.V., Liang, J., Sohrabi, A., Goodman, A.G., Walthers, C.M., Shea, L.D., and Seidlits, S.K.: Reducing neuroinflammation by delivery of IL-10 encoding lentivirus from multiple-channel bridges. Bioeng. Transl. Med. 1, 136148 (2016).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Communications
  • ISSN: 2159-6859
  • EISSN: 2159-6867
  • URL: /core/journals/mrs-communications
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed