Skip to main content Accessibility help
×
Home

Tellurium-doped lanthanum manganite as catalysts for the oxygen reduction reaction

  • V. Celorrio (a1), L.J. Morris (a1) (a2), M. Cattelan (a1), N.A. Fox (a1) and D.J. Fermin (a1)...

Abstract

The effect of tellurium (Te) doping on the electrocatalytic activity of La1−x Te x MnO3 toward the oxygen reduction reaction is investigated for the first time. La1−x Te x MnO3 with x-values up 23% were synthesized from a single ionic liquid-based precursor, yielding nanoparticles with mean diameter in the range of 40–68 nm and rhombohedral unit cell. Electrochemical studies were performed on carbon-supported particles in alkaline environment. The composition dependence activity is discussed in terms of surface density of Mn sites and changes in the effective Mn oxidation state.

Copyright

Corresponding author

Address all correspondence to: D.J. Fermin at david.fermin@bristol.ac.uk

References

Hide All
1. Cheng, F. and Chen, J.: Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts. Chem. Soc. Rev. 41, 2172 (2012).
2. Lee, D.U., Xu, P., Cano, Z.P., Kashkooli, A.G., Park, M.G., and Chen, Z.: Recent progress and perspectives on bi-functional oxygen electrocatalysts for advanced rechargeable metal-air batteries. J. Mater. Chem. A 4, 7107 (2016).
3. Li, L., Feng, X., Chen, S., Shi, F., Xiong, K., Ding, W., Qi, X., Hu, J., Wei, Z., Wan, L-J., and Xia, M.: Insight into the effect of oxygen vacancy concentration on the catalytic performance of MnO2 . ACS Catal. 5, 4825 (2015).
4. Hardin, W.G., Mefford, J.T., Slanac, D.A., Patel, B.B., Wang, X., Dai, S., Zhao, X., Ruoff, R.S., Johnston, K.P., and Stevenson, K.J.: Tuning the electrocatalytic activity of perovskites through active site variation and support interactions. Chem. Mater. 26, 3368 (2014).
5. Suntivich, J., Gasteiger, H.A., Yabuuchi, N., Nakanishi, H., Goodenough, J.B., and Shao-Horn, Y.: Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal–air batteries. Nat. Chem. 3, 546 (2011).
6. Stoerzinger, K.A., Risch, M., Han, B., and Shao-Horn, Y.: Recent insights into manganese oxides in catalyzing oxygen reduction kinetics. ACS Catal. 5, 6021 (2015).
7. Celorrio, V., Calvillo, L., Dann, E., Granozzi, G., Aguadero, A., Kramer, D., Russell, A.E., and Fermin, D.J.: Oxygen reduction reaction at La x Ca1−x MnO3 nanostructures: interplay between A-site segregation and B-site valency. Catal. Sci. Tech. 6, 7231 (2016).
8. Ge, X., Sumboja, A., Wuu, D., An, T., Li, B., Goh, F.W.T., Hor, T.S.A., Zong, Y., and Liu, Z.: Oxygen reduction in alkaline media: from mechanisms to recent advances of catalysts. ACS Catal. 5, 4643 (2015).
9. Calle-Vallejo, F., Inoglu, N.G., Su, H-Y., Martinez, J.I., Man, I.C., Koper, M.T.M., Kitchin, J.R., and Rossmeisl, J.: Number of outer electrons as descriptor for adsorption processes on transition metals and their oxides. Chem. Sci. 4, 1245 (2013).
10. Lee, W., Han, J.W., Chen, Y., Cai, Z., and Yildiz, B.: Cation size mismatch and charge interactions drive dopant segregation at the surfaces of manganite perovskites. J. Am. Chem. Soc. 135, 7909 (2013).
11. Celorrio, V., Dann, E., Calvillo, L., Morgan, D.J., Hall, S.R., and Fermin, D.J.: Oxygen reduction at carbon-supported lanthanides: the role of the B-site. ChemElectroChem 3, 283 (2016).
12. Ryabova, A.S., Napolskiy, F.S., Poux, T., Istomin, S.Y., Bonnefont, A., Antipin, D.M., Baranchikov, A.Y., Levin, E.E., Abakumov, A.M., Kéranguéven, G., Antipov, E.V., Tsirlina, G.A., and Savinova, E.R.: Rationalizing the influence of the Mn(IV)/Mn(III) red-ox transition on the electrocatalytic activity of manganese oxides in the oxygen reduction reaction. Electrochim. Acta 187, 161 (2016).
13. Hong, W.T., Risch, M., Stoerzinger, K.A., Grimaud, A., Suntivich, J., and Shao-Horn, Y.: Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis. Energy Environ. Sci. 8, 1404 (2015).
14. Yang, J., Song, W.H., Ma, Y.Q., Zhang, R.L., and Sun, Y.P.: Determination of oxygen stoichiometry in the mixed-valent manganites. J. Magn. Magn. Mater. 285, 417 (2005).
15. Green, D.C., Glatzel, S., Collins, A.M., Patil, A.J., and Hall, S.R.: A new general synthetic strategy for phase-pure complex functional materials. Adv. Mater. 24, 5767 (2012).
16. Rodríguez-Carvajal, J.: Recent advances in magnetic structure determination by neutron powder diffraction. Phys. B: Condens Matter 192, 55 (1993).
17. Rietveld, H.: A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2, 65 (1969).
18. Yang, J., Song, W.H., Ma, Y.Q., Zhang, R.L., Zhao, B.C., Sheng, Z.G., Zheng, G.H., Dai, J.M., and Sun, Y.P.: Insulator–metal transition and the magnetic phase diagram of La1−x Te x MnO3 (0.1 ≤ x ≤ 0.6). Mater. Chem. Phys. 94, 62 (2005).
19. Zheng, G.H., Sun, Y.P., Zhu, X.B., and Song, W.H.: Transport, magnetic, internal friction, and Young's modulus in the Y-doped manganites La0.9−x Y x Te0.1MnO3 . J. Solid State Chem. 179, 1394 (2006).
20. Sunding, M.F., Hadidi, K., Diplas, S., Løvvik, O.M., Norby, T.E., and Gunnæs, A.E.: XPS characterisation of in situ treated lanthanum oxide and hydroxide using tailored charge referencing and peak fitting procedures. J. Electron. Spectrosc. Relat. Phenom. 184, 399 (2011).
21. Álvarez-Galván, M.C., de la Peña O'Shea, V.A., Arzamendi, G., Pawelec, B., Gandía, L.M., and Fierro, J.L.G.: Methyl ethyl ketone combustion over La-transition metal (Cr, Co, Ni, Mn) perovskites. Appl. Catal. B 92, 445 (2009).
22. Bolwin, K., Schnurnberger, W., and Schiller, G.: Influence of valence band states on the core hole screening in lanthanide perovskite compounds. Z. Phys. B 72, 203 (1988).
23. Christie, A.B., Sutherland, I., and Walls, J.M.: Studies of the composition, ion-induced reduction and preferential sputtering of anodic oxide films on Hg0.8Cd0.2Te by XPS. Surf. Sci. 135, 225 (1983).
24. Farrow, R.F.C., Dennis, P.N.J., Bishop, H.E., Smart, N.R., and Wotherspoon, J.T.M.: The composition of anodic oxide films on Hg0.8Cd0.2Te. Thin Solid Films 88, 87 (1982).
25. Di Castro, V. and Polzonetti, G.: XPS study of MnO oxidation. J. Electron. Spectrosc. Relat. Phenom. 48, 117 (1989).
26. Druce, J., Tellez, H., Burriel, M., Sharp, M.D., Fawcett, L.J., Cook, S.N., McPhail, D.S., Ishihara, T., Brongersma, H.H., and Kilner, J.A.: Surface termination and subsurface restructuring of perovskite-based solid oxide electrode materials. Energy Environ. Sci. 7, 3593 (2014).
27. Bard, A.J.: Chapter 9: Methods involving forced convection-hydrodynamic methods. In Electrochemical Methods: Fundamentals and Applications, edited by Bard, A.J. and Faulkner, L.R. (Wiley, New York, 1980), pp. 331367.

Related content

Powered by UNSILO
Type Description Title
WORD
Supplementary materials

Celorrio supplementary material
Celorrio supplementary material 1

 Word (3.9 MB)
3.9 MB

Tellurium-doped lanthanum manganite as catalysts for the oxygen reduction reaction

  • V. Celorrio (a1), L.J. Morris (a1) (a2), M. Cattelan (a1), N.A. Fox (a1) and D.J. Fermin (a1)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.