Skip to main content

Three-dimensional cell culture of human mesenchymal stem cells in nanofibrillar cellulose hydrogels

  • Ioannis Azoidis (a1), Joel Metcalfe (a1), James Reynolds (a2), Shirley Keeton (a3), Sema S. Hakki (a4), Jonathan Sheard (a1) (a5) and Darius Widera (a1)...

Human mesenchymal stem cells (MSCs) are the most intensely studied and clinically used adult stem cell type. Conventional long-term cultivation of MSCs as a monolayer is known to result in a reduction of their functionality and viability. In addition, large volumes of cell culture medium are required to obtain cell quantities needed for their clinical use. In this proof of concept study, we cultivated human MSCs within a three-dimensional nanofibrillar cellulose (NFC) hydrogel. We show that NFC is biocompatible with human MSCs, and represents a feasible approach to upscaling of their culture.

Corresponding author
Address all correspondence to Darius Widera at
Hide All
1. Sharma R.R., Pollock K., Hubel A., and McKenna D.: Mesenchymal stem or stromal cells: a review of clinical applications and manufacturing practices. Transfusion 54, 1418 (2014).
2. Gnecchi M., He H., Noiseux N., Liang O.D., Zhang L., Morello F., Mu H., Melo L.G., Pratt R.E., Ingwall J.S., and Dzau V.J.: Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. FASEB J. 20, 661 (2006).
3. Lai R.C., Arslan F., Lee M.M., Sze N.S., Choo A., Chen T.S., Salto-Tellez M., Timmers L., Lee C.N., El Oakley R.M., Pasterkamp G., de Kleijn D.P., and Lim S.K.: Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res. 4, 214 (2010).
4. Kordelas L., Rebmann V., Ludwig A.K., Radtke S., Ruesing J., Doeppner T.R., Epple M., Horn P.A., Beelen D.W., and Giebel B.: MSC-derived exosomes: a novel tool to treat therapy-refractory graft-versus-host disease. Leukemia 28, 970 (2014).
5. Ben-David U., Mayshar Y., and Benvenisty N.: Large-scale analysis reveals acquisition of lineage-specific chromosomal aberrations in human adult stem cells. Cell Stem Cell 9, 97 (2011).
6. Bara J.J., Richards R.G., Alini M., and Stoddart M.J.: Concise review: bone marrow-derived mesenchymal stem cells change phenotype following in vitro culture: implications for basic research and the clinic. Stem Cells 32, 1713 (2014).
7. Turinetto V., Vitale E., and Giachino C.: Senescence in human mesenchymal stem cells: functional changes and implications in stem cell-based therapy. Int. J. Mol. Sci. 17, 1164 (2016).
8. Ho S.S., Murphy K.C., Binder B.Y., Vissers C.B., and Leach J.K.: Increased survival and function of mesenchymal stem cell spheroids entrapped in instructive alginate hydrogels. Stem Cells Transl. Med. 5, 773 (2016).
9. Lund A.W., Stegemann J.P., and Plopper G.E.: Mesenchymal stem cells sense three dimensional type I collagen through discoidin domain receptor 1. Open Stem Cell J. 1, 40 (2009).
10. Gardner O.F., Musumeci G., Neumann A.J., Eglin D., Archer C.W., Alini M., and Stoddart M.J.: Asymmetrical seeding of MSCs into fibrin-poly(ester-urethane) scaffolds and its effect on mechanically induced chondrogenesis. J. Tissue Eng. Regen. Med. (2016). doi: 10.1002/term.
11. Favi P.M., Benson R.S., Neilsen N.R., Hammonds R.L., Bates C.C., Stephens C.P., and Dhar M.S.: Cell proliferation, viability, and in vitro differentiation of equine mesenchymal stem cells seeded on bacterial cellulose hydrogel scaffolds. Mater. Sci. Eng. C Mater. Biol. Appl. 33, 1935 (2013).
12. Cochis A., Grad S., Stoddart M.J., Fare S., Altomare L., Azzimonti B., Alini M., and Rimondini L.: Bioreactor mechanically guided 3D mesenchymal stem cell chondrogenesis using a biocompatible novel thermo-reversible methylcellulose-based hydrogel. Sci. Rep. 7, 45018 (2017).
13. Yamaguchi Y., Ohno J., Sato A., Kido H., and Fukushima T.: Mesenchymal stem cell spheroids exhibit enhanced in-vitro and in-vivo osteoregenerative potential. BMC Biotechnol. 14, 105 (2014).
14. Serban M.A., Liu Y., and Prestwich G.D.: Effects of extracellular matrix analogues on primary human fibroblast behavior. Acta Biomater. 4, 67 (2008).
15. Lou Y.R., Kanninen L., Kuisma T., Niklander J., Noon L.A., Burks D., Urtti A., and Yliperttula M.: The use of nanofibrillar cellulose hydrogel as a flexible three-dimensional model to culture human pluripotent stem cells. Stem Cells Dev. 23, 380 (2014).
16. Bhattacharya M., Malinen M.M., Lauren P., Lou Y.R., Kuisma S.W., Kanninen L., Lille M., Corlu A., GuGuen-Guillouzo C., Ikkala O., Laukkanen A., Urtti A., and Yliperttula M.: Nanofibrillar cellulose hydrogel promotes three-dimensional liver cell culture. J. Control Release 164, 291 (2012).
17. Malinen M.M., Kanninen L.K., Corlu A., Isoniemi H.M., Lou Y.R., Yliperttula M.L., and Urtti A.O.: Differentiation of liver progenitor cell line to functional organotypic cultures in 3D nanofibrillar cellulose and hyaluronan-gelatin hydrogels. Biomaterials 35, 5110 (2014).
18. Dominici M., Le Blanc K., Mueller I., Slaper-Cortenbach I., Marini F., Krause D., Deans R., Keating A., Prockop D., and Horwitz E.: Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8, 315 (2006).
19. Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., Tinevez J.Y., White D.J., Hartenstein V., Eliceiri K., Tomancak P., and Cardona A.: Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676 (2012).
20. Kaus A., Widera D., Kassmer S., Peter J., Zaenker K., Kaltschmidt C., and Kaltschmidt B.: Neural stem cells adopt tumorigenic properties by constitutively activated NF-kappaB and subsequent VEGF up-regulation. Stem Cells Dev. 19, 999 (2010).
21. Petersen O.W., Rønnov-Jessen L., Howlett A.R., and Bissell M.J.: Interaction with basement membrane serves to rapidly distinguish growth and differentiation pattern of normal and malignant human breast epithelial cells. Proc. Natl. Acad. Sci. U.S.A. 89, 9064 (1992).
22. Yang C.M., Huang Y.J., and Hsu S.H.: Enhanced autophagy of adipose-derived stem cells grown on chitosan substrates. Biores Open Access 4, 89 (2015).
23. Kleinman H.K. and Martin G.R.: Matrigel: basement membrane matrix with biological activity. Semin. Cancer Biol. 15, 378 (2005).
24. Paletta J.R., Mack F., Schenderlein H., Theisen C., Schmitt J., Wendorff J.H., Agarwal S., Fuchs-Winkelmann S., and Schofer M.D.: Incorporation of osteoblasts (MG63) into 3D nanofibre matrices by simultaneous electrospinning and spraying in bone tissue engineering. Eur. Cell Mater. 21, 384 (2011).
25. Paukkonen H., Ukkonen A., Szilvay G., Yliperttula M., and Laaksonen T.: Hydrophobin-nanofibrillated cellulose stabilized emulsions for encapsulation and release of BCS class II drugs. Eur. J. Pharm. Sci. 100, 238 (2017).
26. Modulevsky D.J., Cuerrier C.M., and Pelling A.E.: Biocompatibility of subcutaneously implanted plant-derived cellulose biomaterials. PLoS ONE 11, e0157894 (2016).
27. Lopes V.R., Sanchez-Martinez C., Stromme M., and Ferraz N.: In vitro biological responses to nanofibrillated cellulose by human dermal, lung and immune cells: surface chemistry aspect. Part. Fibre Toxicol. 14, 1 (2017).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Communications
  • ISSN: 2159-6859
  • EISSN: 2159-6867
  • URL: /core/journals/mrs-communications
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 58
Total number of PDF views: 83 *
Loading metrics...

Abstract views

Total abstract views: 576 *
Loading metrics...

* Views captured on Cambridge Core between 11th August 2017 - 21st February 2018. This data will be updated every 24 hours.