Skip to main content

Three-dimensional microscale flow of polymer coatings on glass during indentation

  • L. R. Bartell (a1), N. Y. C. Lin (a2), J. L. Lyon (a3), M. L. Sorensen (a3), D. A. Clark (a3), M. J. Lockhart (a3), J. R. Matthews (a3), G. S. Glaesemann (a3), M. E. DeRosa (a3) and I. Cohen (a2)...

We present an indentation-scope that interfaces with confocal microscopy, enabling direct observation of the three-dimensional (3D) microstructural response of coatings on substrates. Using this method, we compared microns-thick polymer coatings on glass with and without silica nanoparticle filler. Bulk force data confirmed the >30% modulus difference, while microstructural data further revealed slip at the glass-coating interface. Filled coatings slipped more and about two times faster, as reflected in 3D displacement and von Mises strain fields. Overall, these data indicate that silica-doping of coatings can dramatically alter adhesion. Moreover, this method compliments existing theoretical and modeling approaches for studying indentation in layered systems.

Corresponding author
*Address all correspondence to Lena R. Bartell at
Hide All
1. Garcia Parejo P., Zayat M., and Levy D.: Highly efficient UV-absorbing thin-film coatings for protection of organic materials against photodegradation. J. Mater. Chem. 16, 2165 (2006).
2. Hu S., Lewis N.S., Ager J.W., Yang J., McKone J.R., and Strandwitz N.C.: Thin-film materials for the protection of semiconducting photoelectrodes in solar-fuel generators. J. Phys. Chem. C 119, 24201 (2015).
3. Wang D. and Bierwagen G.P.: Sol–gel coatings on metals for corrosion protection. Prog. Org. Coat. 64, 327 (2009).
4. Ritter J.E., Gu W., and Lardner T.J.: Effectiveness of polymer coatings on reducing indention damage in glass. Polym. Eng. Sci. 32, 1372 (1992).
5. Kinloch A.J., Mohammed R.D., Taylor A.C., Eger C., Sprenger S., and Egan D.: The effect of silica nano particles and rubber particles on the toughness of multiphase thermosetting epoxy polymers. J. Mater. Sci. 40, 5083 (2005).
6. Ragosta G., Abbate M., Musto P., Scarinzi G., and Mascia L.: Epoxy-silica particulate nanocomposites: chemical interactions, reinforcement and fracture toughness. Polymer 46, 10506 (2005).
7. Zhang H., Zhang Z., Friedrich K., and Eger C.: Property improvements of in situ epoxy nanocomposites with reduced interparticle distance at high nanosilica content. Acta Mater. 54, 1833 (2006).
8. Hsieh T.H., Kinloch A.J., Masania K., Lee J.S., Taylor A.C., and Sprenger S.: The toughness of epoxy polymers and fibre composites modified with rubber microparticles and silica nanoparticles. J. Mater. Sci. 45, 1193 (2010).
9. Ritter J.E., Sioui D.R., and Lardner T.J.: Indentation behavior of polymer coatings on glass. Polym. Eng. Sci. 32, 1366 (1992).
10. Ritter J.E., Lardner T.J., Rosenfeld L., and Lin M.R.: Measurement of adhesion of thin polymer coatings by indentation. J. Appl. Phys. 66, 3626 (1989).
11. Chai H., Lawn B., and Wuttiphan S.: Fracture modes in brittle coatings with large interlayer modulus mismatch. J. Mater. Res. 14, 3805 (1999).
12. Bull S.J.: A simple method for the assessment of the contact modulus for coated systems. Philos. Mag. 95, 1907 (2015).
13. Lee D., Rahman M.M., Zhou Y., and Ryu S.: Three-dimensional confocal microscopy indentation method for hydrogel elasticity measurement. Langmuir 31, 9684 (2015).
14. King R.B.: Elastic analysis of some punch problems for a layered medium. Int. J. Solids Struct. 23, 1657 (1987).
15. Hakiri N., Matsuda A., and Sakai M.: Instrumented indentation microscope applied to the elastoplastic indentation contact mechanics of coating/substrate composites. J. Mater. Res. 24, 1950 (2009).
16. Silbernagl D. and Cappella B.: Mechanical properties of thin polymer films on stiff substrates. Scanning 32, 282 (2010).
17. Bhattacharya A.K. and Nix W.D.: Analysis of elastic and plastic deformation associated with indentation testing of thin films on substrates. Int. J. Solids Struct. 24, 1287 (1988).
18. Hirst W. and Howse M.G.J.W.: The indentation of materials by wedges. Proc. R. Soc. Lond. Math. Phys. Eng. Sci. 311, 429 (1969).
19. Gao X.-L., Jing X.N., and Subhash G.: Two new expanding cavity models for indentation deformations of elastic strain-hardening materials. Int. J. Solids Struct. 43, 2193 (2006).
20. Ritter J.E. and Rosenfeld L.G.: Use of the indentation technique for studying delamination of polymeric coatings. J. Adhes. Sci. Technol. 4, 551 (1990).
21. Bull S.J.: Nanoindentation of coatings. J. Phys. Appl. Phys. 38, R393 (2005).
22. Li M., Palacio M.L., Barry Carter C., and Gerberich W.W.: Indentation deformation and fracture of thin polystyrene films. Thin Solid Films 416, 174 (2002).
23. Lin N.Y.C., McCoy J., Cheng X., Leahy B., Israelachvili J.N., and Cohen I.: A multi-axis confocal rheoscope for studying shear flow of structured fluids. Rev. Sci. Instrum. 85, 033905 (2014).
24. Crocker J.C. and Grier D.G.: Methods of digital video microscopy for colloidal studies. J. Colloid Interface Sci. 179, 298 (1996).
25. Bartell L.: Barnes interpolation (Barnes objective analysis). Version 1.3. MATLAB Central File Exchange.
26. Liu W. and Long R.: Constructing continuous strain and stress fields from spatially discrete displacement data in soft materials. J. Appl. Mech.-Trans. Asme 83, 011006 (2016).
27. Lee J. and Yee A.F.: Fracture of glass bead/epoxy composites: on micro-mechanical deformations. Polymer 41, 8363 (2000).
28. Gossweiler G.R., Hewage G.B., Soriano G., Wang Q., Welshofer G.W., Zhao X., and Craig S.L.: Mechanochemical activation of covalent bonds in polymers with full and repeatable macroscopic shape recovery. ACS Macro Lett. 3, 216 (2014).
29. Celestine A.-D.N., Beiermann B.A., May P.A., Moore J.S., Sottos N.R., and White S.R.: Fracture-induced activation in mechanophore-linked, rubber toughened PMMA. Polymer 55, 4164 (2014).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Communications
  • ISSN: 2159-6859
  • EISSN: 2159-6867
  • URL: /core/journals/mrs-communications
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
Type Description Title
Supplementary Materials

Bartell et al supplementary material
Bartell et al supplementary material 1

 Unknown (85.6 MB)
85.6 MB


Full text views

Total number of HTML views: 2
Total number of PDF views: 16 *
Loading metrics...

Abstract views

Total abstract views: 224 *
Loading metrics...

* Views captured on Cambridge Core between 17th October 2017 - 20th November 2017. This data will be updated every 24 hours.