Skip to main content Accessibility help

Towards the directed evolution of protein materials

  • Anton Kan (a1) and Neel S. Joshi (a1) (a2)


Protein-based materials are a powerful instrument for a new generation of biological materials, with many chemical and mechanical capabilities. Through the manipulation of DNA, researchers can design proteins at the molecular level, engineering a vast array of structural building blocks. However, our capability to rationally design and predict the properties of such materials is limited by the vastness of possible sequence space. Directed evolution has emerged as a powerful tool to improve biological systems through mutation and selection, presenting another avenue to produce novel protein materials. In this prospective review, we discuss the application of directed evolution for protein materials, reviewing current examples and developments that could facilitate the evolution of protein for material applications.


Corresponding author

Address all correspondence to Neel S. Joshi at


Hide All
1.Cheng, A.A. and Lu, T.K.: Synthetic biology: an emerging engineering discipline. Annu. Rev. Biomed. Eng. 14, 155178 (2012).
2.Chen, Y.-J.. Liu, P., Nielsen, A.A.K., Brophy, J.A.N., Clancy, K., Peterson, T., and Voigt, C.A.: Characterization of 582 natural and synthetic terminators and quantification of their design constraints. Nat. Methods 10, 659664 (2013).
3.Nielsen, A.A.K., Der, B.S., Shin, J., Vaidyanathan, P., Paralanov, V., Strychalski, E.A., Ross, D., Densmore, D., and Voigt, C.A.: Genetic circuit design automation. Science 352, aac7341 (2016).
4.Esvelt, K.M. and Wang, H.H.: Genome-scale engineering for systems and synthetic biology. Mol. Syst. Biol. 9, 641 (2013).
5.Mee, M.T., Collins, J.J., Church, G.M., and Wang, H.H.: Syntrophic exchange in synthetic microbial communities. Proc. Natl. Acad. Sci. USA 111, E2149E2156 (2014).
6.Elowitz, M. and Lim, W.A.: Build life to understand it. Nature 468, 889890 (2010).
7.Paddon, C.J., Westfall, P.J., Pitera, D.J., Benjamin, K., Fisher, K., McPhee, D., Leavell, M.D., Tai, A., Main, A., Eng, D., Polichuk, D.R., Teoh, K.H., Reed, D.W., Treynor, T., Lenihan, J., Jiang, H., Fleck, M., Bajad, S., Dang, G., Dengrove, D., Diola, D., Dorin, G., Ellens, K.W., Fickes, S., Galazzo, J., Gaucher, S.P., Geistlinger, T., Henry, R., Hepp, M., Horning, T., Iqbal, T., Kizer, L., Lieu, B., Melis, D., Moss, N., Regentin, R., Secrest, S., Tsuruta, H., Vazquez, R., Westblade, L.F., Xu, L., Yu, M., Zhang, Y., Zhao, L., Lievense, J., Covello, P.S., Keasling, J.D., Reiling, K.K., Renninger, N.S., and Newman, J.D.: High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496, 528532 (2013).
8.Ball, P.: Synthetic biology—Engineering nature to make materials. MRS Bull. 43, 477484 (2018).
9.Le Feuvre, R.A. and Scrutton, N.S.: A living foundry for synthetic biological materials: a synthetic biology roadmap to new advanced materials. Synth. Syst. Biotechnol. 3, 105112 (2018).
10.Rice, M.K. and Ruder, W.C.: Creating biological nanomaterials using synthetic biology. Sci. Technol. Adv. Mater. 15, 014401 (2013).
11.MacEwan, S.R. and Chilkoti, A.: Applications of elastin-like polypeptides in drug delivery. J. Controlled Release 190, 314330 (2014).
12.DeFrates, K.G., Moore, R., Borgesi, J., Lin, G., Mulderig, T., Beachley, V., and Hu, X.: Protein-based fiber materials in medicine: a review. Nanomaterials (Basel, Switz.) 8, 457 (2018).
13.Romano, N.H., Sengupta, D., Chung, C., and Heilshorn, S.C.: Protein-engineered biomaterials: nanoscale mimics of the extracellular matrix. Biochim. Biophys. Acta 1810, 339349 (2011).
14.Chan, G. and Mooney, D.J.: New materials for tissue engineering: towards greater control over the biological response. Trends Biotechnol. 26, 382392 (2008).
15.Caves, J.M., Kumar, V.A., Martinez, A.W., Kim, J., Ripberger, C.M., Haller, C.A., and Chaikof, E.L.: The use of microfiber composites of elastin-like protein matrix reinforced with synthetic collagen in the design of vascular grafts. Biomaterials 31, 71757182 (2010).
16.Gilbert, C. and Ellis, T.: Biological engineered living materials: growing functional materials with genetically programmable properties. ACS Synth. Biol. 8, 115 (2019).
17.Nguyen, P.Q., Courchesne, N.-M.D., Duraj-Thatte, A., Praveschotinunt, P., and Joshi, N.S.: Engineered living materials: prospects and challenges for using biological systems to direct the assembly of smart materials. Adv. Mater. 30, 1704847 (2018).
18.Naleway, S.E., Porter, M.M., McKittrick, J., and Meyers, M.A.: Structural design elements in biological materials: application to bioinspiration. Adv. Mater. 27, 54555476 (2015).
19.Dill, K.A. and MacCallum, J.L.: The protein-folding problem, 50 years on. Science 338, 10421046 (2012).
20.Cobb, R.E., Sun, N., and Zhao, H.: Directed evolution as a powerful synthetic biology tool. Methods 60, 8190 (2013).
21.van Hest, J.C.M. and Tirrell, D.A.: Protein-based materials, toward a new level of structural control. Chem. Commun. 18971904 (2001).
22.Yang, Y.J., Holmberg, A.L., and Olsen, B.D.: Artificially engineered protein polymers. Annu. Rev. Chem. Biomol. Eng. 8, 549575 (2017).
23.Yang, L., Liu, A., Cao, S., Putri, R.M., Jonkheijm, P., and Cornelissen, J.J.L.M.: Self-assembly of proteins: towards supramolecular materials. Chem. – Eur. J. 22, 1557015582 (2016).
24.Ekiz, M.S., Cinar, G., Khalily, M.A., and Guler, M.O.: Self-assembled peptide nanostructures for functional materials. Nanotechnology 27, 402002 (2016).
25.Okesola, B.O. and Mata, A.: Multicomponent self-assembly as a tool to harness new properties from peptides and proteins in material design. Chem. Soc. Rev. 47, 37213736 (2018).
26.Vepari, C. and Kaplan, D.L.: Silk as a biomaterial. Prog. Polym. Sci. 32, 9911007 (2007).
27.Tokareva, O., Michalczechen-Lacerda, V.A., Rech, E.L., and Kaplan, D.L.: Recombinant DNA production of spider silk proteins. Microb. Biotechnol. 6, 651663 (2013).
28.Peng, Q., Zhang, Y., Lu, L., Shao, H., Qin, K., Hu, X., and Xia, X.: Recombinant spider silk from aqueous solutions via a bio-inspired microfluidic chip. Sci. Rep. 6, 36473 (2016).
29.Craig, C.L.: Evolution of arthropod silks. Annu. Rev. Entomol. 42, 231267 (1997).
30.Vollrath, F. and Selden, P.: The role of behavior in the evolution of spiders, silks, and webs. Annu. Rev. Ecol. Evol. Syst. 38, 819846 (2007).
31.Hu, X., Vasanthavada, K., Kohler, K., McNary, S., Moore, A.M.F., and Vierra, C.A.: Molecular mechanisms of spider silk. Cell. Mol. Life Sci. 63, 19861999 (2006).
32.Römer, L. and Scheibel, T.: The elaborate structure of spider silk. Prion 2, 154161 (2008).
33.Gage, L.P. and Manning, R.F.: Internal structure of the silk fibroin gene of Bombyx mori. I. The fibroin gene consists of a homogeneous alternating array of repetitious crystalline and amorphous coding sequences. J. Biol. Chem. 255, 94449450 (1980).
34.Rudall, K.M. and Kenchington, W.: Arthropod silks: the problem of fibrous proteins in animal tissues. Annu. Rev. Entomol. 16, 7396 (1971).
35.Rising, A., Nimmervoll, H., Grip, S., Fernandez-Arias, A., Storckenfeldt, E., Knight, D.P., Vollrath, F., and Engström, W.: Spider silk proteins—mechanical property and gene sequence. Zool. Sci. 22, 273281 (2005).
36.Kowalczyk, T., Hnatuszko-Konka, K., Gerszberg, A., and Kononowicz, A.K.: Elastin-like polypeptides as a promising family of genetically-engineered protein based polymers. World J. Microbiol. Biotechnol. 30, 21412152 (2014).
37.Hassouneh, W., Christensen, T., and Chilkoti, A.: Elastin-like Polypeptides as a Purification Tag for Recombinant Proteins. Curr. Protoc. Protein Sci. Editor. Board John E Coligan Al CHAPTER, Unit–6.11 (2010).
38.Saxena, R. and Nanjan, M.J.: Elastin-like polypeptides and their applications in anticancer drug delivery systems: a review. Drug Deliv. 22, 156167 (2015).
39.Inostroza-Brito, K.E., Collin, E., Siton-Mendelson, O., Smith, K.H., Monge-Marcet, A., Ferreira, D.S., Rodríguez, R.P., Alonso, M., Rodríguez-Cabello, J.C., Reis, R.L., Sagués, F., Botto, L., Bitton, R., Azevedo, H.S., and Mata, A.: Co-assembly, spatiotemporal control and morphogenesis of a hybrid protein–peptide system. Nat. Chem. 7, 897 (2015).
40.Wang, H., Paul, A., Nguyen, D., Enejder, A., and Heilshorn, S.C.: Tunable control of hydrogel microstructure by kinetic competition between self-assembly and crosslinking of elastin-like proteins. ACS Appl. Mater. Interfaces 10, 2180821815 (2018).
41.Quiroz, F.G. and Chilkoti, A.: Sequence heuristics to encode phase behaviour in intrinsically disordered protein polymers. Nat. Mater. 14, 1164 (2015).
42.Li, N.K., Roberts, S., Quiroz, F.G., Chilkoti, A., and Yingling, Y.G.: Sequence directionality dramatically affects LCST behavior of elastin-like polypeptides. Biomacromolecules 19, 24962505 (2018).
43.Shoulders, M.D. and Raines, R.T.: Collagen structure and stability. Annu. Rev. Biochem. 78, 929958 (2009).
44.Gelse, K., Pöschl, E., and Aigner, T.: Collagens—structure, function, and biosynthesis. Adv. Drug Deliv. Rev. 55, 15311546 (2003).
45.Persikov, A.V., Ramshaw, J.A.M., and Brodsky, B.: Prediction of collagen stability from amino acid sequence. J. Biol. Chem. 280, 1934319349 (2005).
46.Lukomski, S., Nakashima, K., Abdi, I., Cipriano, V.J., Ireland, R.M., Reid, S.D., Adams, G.G., and Musser, J.M.: Identification and characterization of the scl gene encoding a group a streptococcus extracellular protein virulence factor with similarity to human collagen. Infect. Immun. 68, 65426553 (2000).
47.Yu, Z., An, B., Ramshaw, J.A.M., and Brodsky, B.: Bacterial collagen-like proteins that form triple-helical structures. J. Struct. Biol. 186, 451461 (2014).
48.Cosgriff-Hernandez, E., Hahn, M.S., Russell, B., Wilems, T., Munoz-Pinto, D., Browning, M.B., Rivera, J., and Höök, M.: Bioactive hydrogels based on designer collagens. Acta Biomater. 6, 39693977 (2010).
49.Barnhart, M.M. and Chapman, M.R.: Curli biogenesis and function. Annu. Rev. Microbiol. 60, 131147 (2006).
50.Collinson, S.K., Emödy, L., Müller, K.H., Trust, T.J., and Kay, W.W.: Purification and characterization of thin, aggregative fimbriae from Salmonella enteritidis. J. Bacteriol. 173, 47734781 (1991).
51.Nguyen, P.Q., Botyanszki, Z., Tay, P.K.R., and Joshi, N.S.: Programmable biofilm-based materials from engineered curli nanofibres. Nat. Commun. 5, 4945 (2014).
52.Dorval Courchesne, N.-M., Duraj-Thatte, A., Tay, P.K.R., Nguyen, P.Q., and Joshi, N.S.: Scalable production of genetically engineered nanofibrous macroscopic materials via Filtration. ACS Biomater. Sci. Eng. 3, 733741 (2017).
53.Tay, P.K.R., Nguyen, P.Q., and Joshi, N.S.: A synthetic circuit for mercury bioremediation using self-assembling functional amyloids. ACS Synth. Biol. 6, 1841 (2017).
54.Duraj-Thatte, A.M., Praveschotinunt, P., Nash, T.R., Ward, F.R., and Joshi, N.S.: Modulating bacterial and gut mucosal interactions with engineered biofilm matrix proteins. Sci. Rep. 8, 3475 (2018).
55.Zeng, G., Vad, B.S., Dueholm, M.S., Christiansen, G., Nilsson, M., Tolker-Nielsen, T., Nielsen, P.H., Meyer, R.L., and Otzen, D.E.: Functional bacterial amyloid increases Pseudomonas biofilm hydrophobicity and stiffness. Front. Microbiol. 6, 1099 (2015).
56.Axpe, E., Duraj-Thatte, A., Chang, Y., Kaimaki, D.-M., Sanchez-Sanchez, A., Caliskan, H.B., Dorval Courchesne, N.-M., and Joshi, N.S.: Fabrication of amyloid curli fibers–alginate nanocomposite hydrogels with enhanced stiffness. ACS Biomater. Sci. Eng. 4, 21002105 (2018).
57.Dueholm, M.S., Albertsen, M., Otzen, D., and Nielsen, P.H.: Curli functional amyloid systems are phylogenetically widespread and display large diversity in operon and protein structure. PLoS ONE 7, e51274 (2012).
58.King, N.P., Bale, J.B., Sheffler, W., McNamara, D.E., Gonen, S., Gonen, T., Yeates, T.O., and Baker, D.: Accurate design of co-assembling multi-component protein nanomaterials. Nature 510, 103108 (2014).
59.Leaver-Fay, A., Tyka, M., Lewis, S.M., Lange, O.F., Thompson, J., Jacak, R., Kaufman, K., Renfrew, P.D., Smith, C.A., Sheffler, W., Davis, I.W., Cooper, S., Treuille, A., Mandell, D.J., Richter, F., Ban, Y.-E. A., Fleishman, S.J., Corn, J.E., Kim, D.E., Lyskov, S., Berrondo, M., Mentzer, S., Popović, Z., Havranek, J.J., Karanicolas, J., Das, R., Meiler, J., Kortemme, T., Gray, J.J., Kuhlman, B., Baker, D., and Bradley, P.: Rosetta3: an object-oriented software suite for the simulation and design of macromolecules. Methods Enzymol. 487, 545574 (2011).
60.Shen, H., Fallas, J.A., Lynch, E., Sheffler, W., Parry, B., Jannetty, N., Decarreau, J., Wagenbach, M., Vicente, J.J., Chen, J., Wang, L., Dowling, Q., Oberdorfer, G., Stewart, L., Wordeman, L., Yoreo, J.D., Jacobs-Wagner, C., Kollman, J., and Baker, D.: De novo design of self-assembling helical protein filaments. Science 362, 705709 (2018).
61.Cristie-David, A.S., Sciore, A., Badieyan, S., Escheweiler, J.D., Koldewey, P., Bardwell, J.C.A., Ruotolo, B.T., and Marsh, E.N.G.: Evaluation of de novo-designed coiled coils as off-the-shelf components for protein assembly. Mol. Syst. Des. Eng. 2, 140148 (2017).
62.Fletcher, J.M., Harniman, R.L., Barnes, F.R.H., Boyle, A.L., Collins, A., Mantell, J., Sharp, T.H., Antognozzi, M., Booth, P.J., Linden, N., Miles, M.J., Sessions, R.B., Verkade, P., and Woolfson, D.N.: Self-assembling cages from coiled-coil peptide modules. Science 340, 595599 (2013).
63.Thomas, F., Dawson, W.M., Lang, E.J.M., Burton, A.J., Bartlett, G.J., Rhys, G.G., Mulholland, A.J., and Woolfson, D.N.: De novo-designed α-helical barrels as receptors for small molecules. ACS Synth. Biol. 7, 1808 (2018).
64.Ljubetič, A., Lapenta, F., Gradišar, H., Drobnak, I., Aupič, J., Strmšek, Ž., Lainšček, D., Hafner-Bratkovič, I., Majerle, A., Krivec, N., Benčina, M., Pisanski, T., Veličković, T. Ć., Round, A., Carazo, J.M., Melero, R., and Jerala, R.: Design of coiled-coil protein-origami cages that self-assemble in vitro and in vivo. Nat. Biotechnol. 35, 1094 (2017).
65.Rabotyagova, O.S., Cebe, P., and Kaplan, D.L.: Protein-based block copolymers. Biomacromolecules 12, 269289 (2011).
66.Valluzzi, R., Winkler, S., Wilson, D., and Kaplan, D.L.: Silk: molecular organization and control of assembly. Philos. Trans. R. Soc. B: Biol. Sci. 357, 165167 (2002).
67.Rabotyagova, O.S., Cebe, P., and Kaplan, D.L.: Self-assembly of genetically engineered spider silk block copolymers. Biomacromolecules 10, 229236 (2009).
68.Huber, M.C., Schreiber, A., von Olshausen, P., Varga, B.R., Kretz, O., Joch, B., Barnert, S., Schubert, R., Eimer, S., Kele, P., and Schiller, S.M.: Designer amphiphilic proteins as building blocks for the intracellular formation of organelle-like compartments. Nat. Mater. 14, 125 (2015).
69.Dinjaski, N. and Kaplan, D.L.: Recombinant protein blends: silk beyond natural design. Curr. Opin. Biotechnol. 39, 17 (2016).
70.Chen, A.Y., Deng, Z., Billings, A.N., Seker, U.O.S., Lu, M.Y., Citorik, R.J., Zakeri, B., and Lu, T.K.: Synthesis and patterning of tunable multiscale materials with engineered cells. Nat. Mater. 13, 515523 (2014).
71.Polka, J.K., Hays, S.G., and Silver, P.A.: Building spatial synthetic biology with compartments, scaffolds, and communities. Cold Spring Harb. Perspect. Biol. 8, a024018 (2016).
72.Garcia-Seisdedos, H., Empereur-Mot, C., Elad, N., and Levy, E.D.: Proteins evolve on the edge of supramolecular self-assembly. Nature 548, 244 (2017).
73.Suzuki, Y., Cardone, G., Restrepo, D., Zavattieri, P.D., Baker, T.S., and Tezcan, F.A.: Self-assembly of coherently dynamic, auxetic, two-dimensional protein crystals. Nature 533, 369373 (2016).
74.Zakeri, B., Fierer, J.O., Celik, E., Chittock, E.C., Schwarz-Linek, U., Moy, V.T., and Howarth, M.: Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin. Proc. Natl. Acad. Sci. USA 109, E690E697 (2012).
75.Sun, F., Zhang, W.-B., Mahdavi, A., Arnold, F.H., and Tirrell, D.A.: Synthesis of bioactive protein hydrogels by genetically encoded SpyTag-SpyCatcher chemistry. Proc. Natl. Acad. Sci. USA 111, 1126911274 (2014).
76.Cobb, R.E., Chao, R. and Zhao, H.: Directed evolution: past, present and future. AIChE J. Am. Inst. Chem. Eng. 59, 14321440 (2013).
77.Tee, K.L. and Wong, T.S.: Polishing the craft of genetic diversity creation in directed evolution. Biotechnol. Adv. 31, 17071721 (2013).
78.Packer, M.S. and Liu, D.R.: Methods for the directed evolution of proteins. Nat. Rev. Genet. 16, 379394 (2015).
79.Arnold, F.H.: Design by directed evolution. Acc. Chem. Res. 31, 125131 (1998).
80.Currin, A., Swainston, N., Day, P.J., and Kell, D.B.: Synthetic biology for the directed evolution of protein biocatalysts: navigating sequence space intelligently. Chem. Soc. Rev. 44, 11721239 (2015).
81.Stemmer, W.P.C.: Rapid evolution of a protein in vitro by DNA shuffling. Nature 370, 389391 (1994).
82.Zhao, H. and Arnold, F.H.: Optimization of DNA shuffling for high fidelity recombination. Nucleic Acids Res. 25, 13071308 (1997).
83.Crameri, A., Raillard, S.-A., Bermudez, E., and Stemmer, W.P.C.: DNA shuffling of a family of genes from diverse species accelerates directed evolution. Nature 391, 288291 (1998).
84.Engler, C., Gruetzner, R., Kandzia, R., and Marillonnet, S.: Golden gate shuffling: a one-pot DNA shuffling method based on type IIs restriction enzymes. PLoS ONE 4, e5553 (2009).
85.Ostermeier, M., Shim, J.H., and Benkovic, S.J.: A combinatorial approach to hybrid enzymes independent of DNA homology. Nat. Biotechnol. 17, 1205 (1999).
86.Bikard, D., Julié-Galau, S., Cambray, G., and Mazel, D.: The synthetic integron: an in vivo genetic shuffling device. Nucleic Acids Res. 38, e153e153 (2010).
87.Foster, P.L.: In vivo mutagenesis. Methods Enzymol. 204, 114125 (1991).
88.Wang, H.H., Isaacs, F.J., Carr, P.A., Sun, Z.Z., Xu, G., Forest, C.R., and Church, G.M.: Programming cells by multiplex genome engineering and accelerated evolution. Nature 460, 894898 (2009).
89.Halperin, S.O., Tou, C.J., Wong, E.B., Modavi, C., Schaffer, D.V., and Dueber, J.E.: CRISPR-guided DNA polymerases enable diversification of all nucleotides in a tunable window. Nature 560, 248 (2018).
90.Lutz, S.: Beyond directed evolution—semi-rational protein engineering and design. Curr. Opin. Biotechnol. 21, 734743 (2010).
91.Heinzelman, P., Snow, C.D., Wu, I., Nguyen, C., Villalobos, A., Govindarajan, S., Minshull, J., and Arnold, F.H.: A family of thermostable fungal cellulases created by structure-guided recombination. Proc. Natl. Acad. Sci. USA 106, 56105615 (2009).
92.Tizei, P.A.G., Csibra, E., Torres, L., and Pinheiro, V.B.: Selection platforms for directed evolution in synthetic biology. Biochem. Soc. Trans. 44, 11651175 (2016).
93.Raman, S., Rogers, J.K., Taylor, N.D., and Church, G.M.: Evolution-guided optimization of biosynthetic pathways. Proc. Natl. Acad. Sci. USA 111, 1780317808 (2014).
94.Pédelacq, J.-D., Cabantous, S., Tran, T., Terwilliger, T.C., and Waldo, G.S.: Engineering and characterization of a superfolder green fluorescent protein. Nat. Biotechnol. 24, 7988 (2006).
95.Morgan, S.-A., Nadler, D.C., Yokoo, R., and Savage, D.F.: Biofuel metabolic engineering with biosensors. Curr. Opin. Chem. Biol. 35, 150158 (2016).
96.Devenish, S.R.A., Kaltenbach, M., Fischlechner, M., and Hollfelder, F.: Droplets as Reaction Compartments for Protein Nanotechnology. In Protein Nanotechnology: Protocols, Instrumentation, and Applications, 2nd ed., edited by Gerrard, J A. (Humana Press, 2013), pp. 269286.
97.O'Neil, K.T. and Hoess, R.H.: Phage display: protein engineering by directed evolution. Curr. Opin. Struct. Biol. 5, 443449 (1995).
98.Fernandez-Gacio, A., Uguen, M., and Fastrez, J.: Phage display as a tool for the directed evolution of enzymes. Trends Biotechnol. 21, 408414 (2003).
99.Esvelt, K.M., Carlson, J.C., and Liu, D.R.: A system for the continuous directed evolution of biomolecules. Nature 472, 499 (2011).
100.Leemhuis, H., Stein, V., Griffiths, A.D., and Hollfelder, F.: New genotype–phenotype linkages for directed evolution of functional proteins. Curr. Opin. Struct. Biol. 15, 472478 (2005).
101.Kosuri, S., Goodman, D.B., Cambray, G., Mutalik, V.K., Gao, Y., Arkin, A.P., Endy, D., and Church, G.M.: Composability of regulatory sequences controlling transcription and translation in Escherichia coli. Proc. Natl. Acad. Sci. USA. 110, 14024 (2013).
102.Zinchenko, A., Devenish, S.R.A., Kintses, B., Colin, P.-Y., Fischlechner, M., and Hollfelder, F.: One in a million: flow cytometric sorting of single cell-lysate assays in monodisperse picolitre double emulsion droplets for directed evolution. Anal. Chem. 86, 25262533 (2014).
103.Agresti, J.J., Antipov, E., Abate, A.R., Ahn, K., Rowat, A.C., Baret, J.-C., Marquez, M., Klibanov, A.M., Griffiths, A.D., and Weitz, D.A.: Ultrahigh-throughput screening in drop-based microfluidics for directed evolution. Proc. Natl. Acad. Sci. USA 107, 40044009 (2010).
104.Colin, P.-Y., Kintses, B., Gielen, F., Miton, C.M., Fischer, G., Mohamed, M.F., Hyvönen, M., Morgavi, D.P., Janssen, D.B., and Hollfelder, F.: Ultrahigh-throughput discovery of promiscuous enzymes by picodroplet functional metagenomics. Nat. Commun. 6, 10008 (2015).
105.Gielen, F., Hours, R., Emond, S., Fischlechner, M., Schell, U., and Hollfelder, F.: Ultrahigh-throughput–directed enzyme evolution by absorbance-activated droplet sorting (AADS). Proc. Natl. Acad. Sci. USA 113, E7383E7389 (2016).
106.Girault, M., Kim, H., Arakawa, H., Matsuura, K., Odaka, M., Hattori, A., Terazono, H., and Yasuda, K.: An on-chip imaging droplet-sorting system: a real-time shape recognition method to screen target cells in droplets with single cell resolution. Sci. Rep. 7, 40072 (2017).
107.Xi, H.-D., Zheng, H., Guo, W., Gañán-Calvo, A.M., Ai, Y., Tsao, C.-W., Zhou, J., Li, W., Huang, Y., Nguyen, N.-T., and Tan, S.H.: Active droplet sorting in microfluidics: a review. Lab Chip 17, 751771 (2017).
108.Terekhov, S.S., Smirnov, I.V., Stepanova, A.V., Bobik, T.V., Mokrushina, Y.A., Ponomarenko, N.A., Belogurov, A.A., Rubtsova, M.P., Kartseva, O.V., Gomzikova, M.O., Moskovtsev, A.A., Bukatin, A.S., Dubina, M.V., Kostryukova, E.S., Babenko, V.V., Vakhitova, M.T., Manolov, A.I., Malakhova, M.V., Kornienko, M.A., Tyakht, A.V., Vanyushkina, A.A., Ilina, E.N., Masson, P., Gabibov, A.G., and Altman, S.: Microfluidic droplet platform for ultrahigh-throughput single-cell screening of biodiversity. Proc. Natl. Acad. Sci. USA 114, 25502555 (2017).
109.Romero, P.A. and Arnold, F.H.: Exploring protein fitness landscapes by directed evolution. Nat. Rev. Mol. Cell Biol. 10, 866876 (2009).
110.Bloom, J.D. and Arnold, F.H.: In the light of directed evolution: pathways of adaptive protein evolution. Proc. Natl. Acad. Sci. USA 106, 999510000 (2009).
111.Kauffman, S. and Levin, S.: Towards a general theory of adaptive walks on rugged landscapes. J. Theor. Biol. 128, 1145 (1987).
112.Heddle, J.G., Chakraborti, S., and Iwasaki, K.: Natural and artificial protein cages: design, structure and therapeutic applications. Curr. Opin. Struct. Biol. 43, 148155 (2017).
113.Wörsdörfer, B., Woycechowsky, K.J., and Hilvert, D.: Directed evolution of a protein container. Science 331, 589592 (2011).
114.Butterfield, G.L., Lajoie, M.J., Gustafson, H.H., Sellers, D.L., Nattermann, U., Ellis, D., Bale, J.B., Ke, S., Lenz, G.H., Yehdego, A., Ravichandran, R., Pun, S.H., King, N.P., and Baker, D.: Evolution of a designed protein assembly encapsulating its own RNA genome. Nature 552, 415420 (2017).
115.Bale, J.B., Gonen, S., Liu, Y., Sheffler, W., Ellis, D., Thomas, C., Cascio, D., Yeates, T.O., Gonen, T., King, N.P., and Baker, D.: Accurate design of megadalton-scale two-component icosahedral protein complexes. Science 353, 389394 (2016).
116.Tang, N.C. and Chilkoti, A.: Combinatorial codon scrambling enables scalable gene synthesis and amplification of repetitive proteins. Nat. Mater. 15, 419 (2016).
117.Bednarska, N.G., Schymkowitz, J., Rousseau, F., and Van Eldere, J.: Protein aggregation in bacteria: the thin boundary between functionality and toxicity. Microbiology 159, 17951806 (2013).
118.Evans, M.L., Chorell, E., Taylor, J.D., Åden, J., Götheson, A., Li, F., Koch, M., Sefer, L., Matthews, S.J., Wittung-Stafshede, P., Almqvist, F., and Chapman, M.R.: The bacterial curli system possesses a potent and selective inhibitor of amyloid formation. Mol. Cell 57, 445455 (2015).
119.Kintses, B., Hein, C., Mohamed, M.F., Fischlechner, M., Courtois, F., Lainé, C., and Hollfelder, F.: Picoliter cell lysate assays in microfluidic droplet compartments for directed enzyme evolution. Chem. Biol. 19, 10011009 (2012).
120.Joseph, Cappello, John, Crissman, Mary, Dorman, Marcia, Mikolajczak, Garret, Textor, Magda, Marquet, and Franco, Ferrari: Genetic engineering of structural protein polymers. Biotechnol. Prog. 6, 198202 (1990).
121.Huber, M.C., Schreiber, A., Wild, W., Benz, K., and Schiller, S.M.: Introducing a combinatorial DNA-toolbox platform constituting defined protein-based biohybrid-materials. Biomaterials 35, 87678779 (2014).
122.Darling, E.M. and Di Carlo, D.: High-throughput assessment of cellular mechanical properties. Annu. Rev. Biomed. Eng. 17, 3562 (2015).
123.Nitta, N., Sugimura, T., Isozaki, A., Mikami, H., Hiraki, K., Sakuma, S., Iino, T., Arai, F., Endo, T., Fujiwaki, Y., Fukuzawa, H., Hase, M., Hayakawa, T., Hiramatsu, K., Hoshino, Y., Inaba, M., Ito, T., Karakawa, H., Kasai, Y., Koizumi, K., Lee, S., Lei, C., Li, M., Maeno, T., Matsusaka, S., Murakami, D., Nakagawa, A., Oguchi, Y., Oikawa, M., Ota, T., Shiba, K., Shintaku, H., Shirasaki, Y., Suga, K., Suzuki, Y., Suzuki, N., Tanaka, Y., Tezuka, H., Toyokawa, C., Yalikun, Y., Yamada, M., Yamagishi, M., Yamano, T., Yasumoto, A., Yatomi, Y., Yazawa, M., Di Carlo, D., Hosokawa, Y., Uemura, S., Ozeki, Y., and Goda, K.: Intelligent image-activated cell sorting. Cell, 175, 266276.e13 (2018).
124.Dudani, J.S., Gossett, D.R., Tse, H.T.K., and Carlo, D.D.: Pinched-flow hydrodynamic stretching of single-cells. Lab Chip 13, 37283734 (2013).
125.Hwang, M.Y., Kim, S.G., Lee, H.S., and Muller, S.J.: Elastic particle deformation in rectangular channel flow as a measure of particle stiffness. Soft Matter 14, 216 (2017). doi: 10.1039/C7SM01829K.
126.Wu, P.-H., Hale, C.M., Chen, W.-C., Lee, J.S.H., Tseng, Y., and Wirtz, D.: High-throughput ballistic injection nanorheology to measure cell mechanics. Nat. Protoc. 7, 155 (2012).
127.Liu, T., Liu, X., Spring, D.R., Qian, X., Cui, J., and Xu, Z.: Quantitatively mapping cellular viscosity with detailed organelle information via a designed PET fluorescent probe. Sci. Rep. 4, 5418 (2014).
128.Ding, X., Peng, Z., Lin, S.-C. S., Geri, M., Li, S., Li, P., Chen, Y., Dao, M., Suresh, S., and Huang, T.J.: Cell separation using tilted-angle standing surface acoustic waves. Proc. Natl. Acad. Sci. USA 111, 1299212997 (2014).
129.Islam, M., Brink, H., Blanche, S., DiPrete, C., Bongiorno, T., Stone, N., Liu, A., Philip, A., Wang, G., Lam, W., Alexeev, A., Waller, E.K., and Sulchek, T.: Microfluidic sorting of cells by viability based on differences in cell stiffness. Sci. Rep. 7, 1997 (2017).
130.Gill, N.K., Ly, C., Nyberg, K.D., Lee, L., Qi, D., Tofig, B., Reis-Sobreiro, M., Dorigo, O., Rao, J., Wiedemeyer, R., Karlan, B., Lawrenson, K., Freeman, M.R., Damoiseaux, R., and Rowat, A.C.: A scalable filtration method for high throughput screening based on cell deformability. Lab Chip 19, 343357 (2019).
131.Vahey, M.D. and Voldman, J.: High-throughput cell and particle characterization using ISO-dielectric separation. Anal. Chem. 81, 24462455 (2009).
132.Vahey, M.D., Pesudo, L.Q., Svensson, J.P., Samson, L.D., and Voldman, J.: Microfluidic genome-wide profiling of intrinsic electrical properties in Saccharomyces cerevisiae. Lab Chip 13, 27542763 (2013).
133.Tay, A., Murray, C., and Di Carlo, D.: Phenotypic selection of Magnetospirillum magneticum (AMB-1) overproducers using magnetic ratcheting. Adv. Funct. Mater. 27, 1703106 (2017).
134.Fraser, H.B., Hirsh, A.E., Steinmetz, L.M., Scharfe, C., and Feldman, M.W.: Evolutionary rate in the protein interaction network. Science 296, 750752 (2002).
135.Drummond, D.A., Bloom, J.D., Adami, C., Wilke, C.O., and Arnold, F.H.: Why highly expressed proteins evolve slowly. Proc. Natl. Acad. Sci. USA 102, 1433814343 (2005).
136.Nguyen, P.Q.. Synthetic biology engineering of biofilms as nanomaterials factories. Biochem. Soc. Trans. 45, 585597 (2017).
137.Shin, J. and Noireaux, V.: An E. coli cell-free expression toolbox: application to synthetic gene circuits and artificial cells. ACS Synth. Biol. 1, 2941 (2012).
138.Schaerli, Y. and Hollfelder, F.: The potential of microfluidic water-in-oil droplets in experimental biology. Mol. Biosyst. 5, 13921404 (2009).
139.Mach, A.J., Kim, J.H., Arshi, A., Hur, S.C., and Carlo, D.D.: Automated cellular sample preparation using a centrifuge-on-a-chip. Lab Chip 11, 28272834 (2011).
140.Cheney, N., MacCurdy, R., Clune, J., and Lipson, H.: Unshackling Evolution: Evolving Soft Robots with Multiple Materials and a Powerful Generative Encoding. In Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation (ACM, New York, NY, USA, 2013), pp. 167174.
141.Mackenzie, G., Boa, A.N., Diego-Taboada, A., Atkin, S.L., and Sathyapalan, T.: Sporopollenin, The least known yet toughest natural biopolymer. Front. Mater. 2, 66 (2015).
142.Nokelainen, M., Tu, H., Vuorela, A., Notbohm, H., Kivirikko, K.I., and Myllyharju, J.: High-level production of human type I collagen in the yeast Pichia pastoris. Yeast 18, 797806 (2001).

Towards the directed evolution of protein materials

  • Anton Kan (a1) and Neel S. Joshi (a1) (a2)


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed