Skip to main content
×
Home

Underlying causes of the magnetic behavior in surface patterned NiFe2O4 thin films

  • Goran Rasic (a1), Branislav Vlahovic (a1) and Justin Schwartz (a2)
Abstract
Abstract

Surface patterned NiFe2O4 thin films exhibited large reduction in coercivity as compared with the films without surface patterning. Chemical analysis of the films revealed that there was no diffusion between the film and the substrate. Additional heating was shown to improve saturation magnetization without adverse effect on coercivity. The process of imprinting was eliminated as the possible cause of the phenomena as the flat stamp did not alter the magnetic properties of the film. Finally, it was shown that the orientation of the features with respect to the magnetic field does not have a significant effect on the magnetic response.

Copyright
Corresponding author
Address all correspondence to Goran Rasic at grasic@nccu.edu
References
Hide All
1. Cullity B.D. and Graham C.D.: Introduction to Magnetic Materials, 2nd ed. (IEEE/Wiley, Hoboken, NJ, 2009).
2. Spaldin N.A.: Magnetic Materials: Fundamentals and Applications, 2nd ed. (Cambridge University Press, Cambridge, New York, 2011).
3. Luders U., Barthelemy A., Bibes M., Bouzehouane K., Fusil S., Jacquet E., Contour J.P., Bobo J.F., Fontcuberta J., and Fert A.: NiFe2O4: a versatile spinel material brings new opportunities for spintronics. Adv. Mater. 18, 1733 (2006).
4. Chapline M.G. and Wang S.X.: Spin filter based tunnel junctions. J. Appl. Phys. 100, 123909 (2006).
5. Gajek M., Bibes M., Barthelemy A., Bouzehouane K., Fusil S., Varela M., Fontcuberta J., and Fert A.: Spin filtering through ferromagnetic BiMnO3 tunnel barriers. Phys. Rev. B 72, 020406 (2005).
6. Zhao P., Zhao Z.L., Hunter D., Suchoski R., Gao C., Mathews S., Wuttig M., and Takeuchi I.: Fabrication and characterization of all-thin-film magnetoelectric sensors. Appl. Phys. Lett. 94, 243507 (2009).
7. Goodenough J.B.: Summary of losses in magnetic materials. IEEE Trans. Magnetics 38, 3398 (2002).
8. Ross C.A., Haratani S., Castano F.J., Hao Y., Hwang M., Shima M., Cheng J.Y., Vogeli B., Farhoud M., Walsh M., and Smith H.I.: Magnetic behavior of lithographically patterned particle arrays (invited). J. Appl. Phys. 91, 6848 (2002).
9. Li Z., Wang J., Lin Y.H., and Nan C.W.: A magnetoelectric memory cell with coercivity state as writing data bit. Appl. Phys. Lett. 96, 162505 (2010).
10. Shi Z., Wang C.P., Liu X.J., and Nan C.W.: A four-state memory cell based on magnetoelectric composite. Chinese Sci. Bull. 53, 2135 (2008).
11. Bibes M. and Barthelemy A.: Multiferroics: towards a magnetoelectric memory. Nat. Mater. 7, 425 (2008).
12. Priya S., Islam R., Dong S.X., and Viehland D.: Recent advancements in magnetoelectric particulate and laminate composites. J. Electroceram. 19, 149 (2007).
13. Fiebig M.: Revival of the magnetoelectric effect. J. Phys. D-Appl. Phys. 38, R123 (2005).
14. Nan C.W., Bichurin M.I., Dong S.X., Viehland D., and Srinivasan G.: Multiferroic magnetoelectric composites: historical perspective, status, and future directions. J. Appl. Phys. 103, 031101 (2008).
15. Rasic G. and Schwartz J.: Nanoimprint lithographic surface patterning of sol–gel fabricated nickel ferrite (NiFe2O4). MRS Commun. 3, 207 (2013).
16. Rasic G. and Schwartz J.: Coercivity reduction in Nickel Ferrite (NiFe2O4) thin films through surface patterning. IEEE Magnetics Lett. 5, 1 (2014).
17. Rasic G. and Schwartz J.: On the origin of coercivity reduction in surface patterned magnetic thin films. Phys. Status Solidi (a) 212, 449 (2015).
18. Seifikar S., Calandro B., Deeb E., Sachet E., Yang J.J., Maria J.P., Bassiri-Gharb N., and Schwartz J.: Structural and magnetic properties of biaxially textured NiFe2O4 thin films grown on c-plane sapphire. J. Appl. Phys. 112, 3050 (2012).
19. Efimenko K., Wallace W.E., and Genzer J.: Surface modification of Sylgard-184 Poly(dimethyl siloxane) networks by ultraviolet and ultraviolet/ozone treatment. J. Colloid Interface Sci. 254, 306 (2002).
20. Sattler K.D.: Handbook of Nanophysics: Nanotubes and Nanowires (Taylor & Francis, Boca Raton, FL, 2011).
21. Goolaup S., Singh N., and Adeyeye A.O.: Coercivity variation in Ni80Fe20 ferromagnetic nanowires. IEEE Trans. Nanotechnol. 4, 523 (2005).
22. Van Thiem L., Tu L., and Phan M.-H.: Magnetization reversal and magnetic anisotropy in ordered CoNiP nanowire arrays: effects of wire diameter. Sensors 15, 5687 (2015).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Communications
  • ISSN: 2159-6859
  • EISSN: 2159-6867
  • URL: /core/journals/mrs-communications
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 4
Total number of PDF views: 53 *
Loading metrics...

Abstract views

Total abstract views: 297 *
Loading metrics...

* Views captured on Cambridge Core between 13th September 2016 - 23rd November 2017. This data will be updated every 24 hours.