Skip to main content

Vibrant times for mechanical metamaterials

  • Johan Christensen (a1), Muamer Kadic (a2), Oliver Kraft (a3) and Martin Wegener (a2) (a4)

Metamaterials are man-made designer matter that obtains its unusual effective properties by structure rather than chemistry. Building upon the success of electromagnetic and acoustic metamaterials, researchers working on mechanical metamaterials strive at obtaining extraordinary or extreme elasticity tensors and mass-density tensors to thereby mold static stress fields or the flow of longitudinal/transverse elastic vibrations in unprecedented ways. In this prospective paper, we focus on recent advances and remaining challenges in this emerging field. Examples are ultralight-weight, negative mass density, negative modulus, pentamode, anisotropic mass density, Origami, nonlinear, bistable, and reprogrammable mechanical metamaterials.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Vibrant times for mechanical metamaterials
      Available formats
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Vibrant times for mechanical metamaterials
      Available formats
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Vibrant times for mechanical metamaterials
      Available formats
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (, which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited
Corresponding author
Address all correspondence to Johan Christensen
Hide All
1.Lamb H.: On group-velocity. Proc. Lond. Math. Soc. 1, 473 (1904).
2.Lakes R.S.: Foam structures with negative Poisson's ratio. Science 235, 1038 (1987).
3.Greaves G.N., Greer A.L., Lakes R.S., and Rouxel T.: Poisson's ratio and modern materials. Nat. Mater. 10, 823 (2011).
4.Moldovan M.: Sound and heat revolutions in phononics. Nature 503, 209 (2013).
5.Kadic M., Bückmann T., Schittny R., and Wegener M.: Metamaterials beyond electromagnetism. Rep. Prog. Phys. 76, 126501 (2013).
6.Fleck N.A., Deshpande V.S., and Ashby M.F.: Micro-architectured materials: past, present and future. Proc. R. Soc. A 466, 2495 (2010).
7.Schaedler T.A., Jacobsen A.J., Torrents A., Sorensen A.E., Lian J., Greer J.R., Valdevit L., and Carter W.B.: Ultralight metallic microlattices. Science 334, 962 (2011).
8.Deshpande V.S., Ashby M.F., and Fleck N.A.: Foam topology: bending versus stretching dominated architectures. Acta Mater. 49, 1035 (2001).
9.Deshpande V.S., Ashby M.F., and Fleck N.A.: Effective properties of the octet-truss lattice material. J. Mech. Phys. Solids 49, 1747 (2001).
10.Zheng X., Lee H., Weisgraber T.H., Shusteff M., DeOtte J., Duoss E.B., Kuntz J.D., Biener M.M., Ge Q., Jackson J.A., Kucheyev S.O., Fang N.X., and Spadaccini C.M.: Ultralight, ultrastiff, mechanical metamaterials. Science 344, 1373 (2014).
11.Kraft O., Gruber P.A., Mönig R.M., and Weygand D.: Plasticity in confined dimensions. Annu. Rev. Mater. Res. 40, 293 (2010).
12.Gao H., Ji B., Jäger I.L., Arzt E., and Fratzl P.: Materials become insensitive to flaws at nanoscale: lessons from nature. Proc. Nat. Acad. Sci. USA 100, 5597 (2003).
13.Meza L.R., Das S., and Greer J.R.: Strong, lightweight, and recoverable three-dimensional ceramic nanolattices. Science 345, 1322 (2014).
14.Bauer J., Hengsbach S., Tesari I., Schwaiger R., and Kraft O.: High-strength cellular ceramic composites with 3D microarchitecture. Proc. Nat. Acad. Sci. USA 111, 2453 (2014).
15.Bauer J., Schroer A., Schwaiger R., Tesari I., Lange C., Valdevit L., and Kraft O.: Push-to-pull tensile testing of ultra-strong nanoscale ceramic–polymer composites made by additive manufacturing. Extreme Mech. Lett. 3, 105 (2015).
16.Bückmann T., Stenger N., Kadic M., Kaschke J., Frölich A., Kennerknecht T., Eberl C., Thiel M., and Wegener M.: Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography. Adv. Mater. 24, 2710 (2012).
17.Valdevit L., Jacobsen A.J., Greer J.R., and Carter W.B.: Protocol for the optimal design of multifunctional structures: from hypersonics to micro-architected materials. J. Am. Ceram. Soc. 94, s15 (2011).
18.Soukoulis C.M. and Wegener M.: Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nat. Photonics 5, 523 (2011).
19.Liu Z., Zhang X., Mao Y., Zhu Y.Y., Yang Z., Chan C.T., and Sheng P.: Locally resonant sonic materials. Science 289, 1734 (2000).
20.Huang H.H., Sun C.T., and Huang G.L.: On the negative effective mass density in acoustic metamaterials. Int. J. Eng. Sci. 47, 610 (2009).
21.Wu Y., Lai Y., and Zhang Z.-Q.: Effective medium theory for elastic metamaterials in two dimensions. Phys. Rev. B 76, 205313 (2007).
22.Ding Y., Liu Z., Qiu C., and Shi J.: Metamaterials with simultaneously negative bulk modulus and mass density. Phys. Rev. Lett. 99, 093904 (2007).
23.Wu Y., Lai Y., and Zhang Z.-Q.: Elastic metamaterials with simultaneously negative effective shear modulus and mass density. Phys. Rev. Lett. 107, 105506 (2011).
24.Li J. and Chan C.T.: Double-negative acoustic metamaterial. Phys. Rev. E 70, 055602(R) (2004).
25.Brunet T., Merlin A., Mascaro B., Zimny K., Leng J., Poncelet O., Aristégui C., and Mondain-Monval O.: Soft 3D acoustic metamaterials with negative index. Nat. Mater. 14, 384 (2015).
26.Nicolaou Z.G. and Motter A.E.: Mechanical metamaterials with negative compressibility transitions. Nat. Mater. 11, 608 (2012).
27.Varadan V.V., Lakhtakia A., and Varadan V.K.: Geometry can be the basis for acoustic activity (a la optical activity) in composite media. J. Wave Mater. Interact. 1, 315 (1986).
28.Lakhtakia A., Varadan V.V., and Varadan V.K.: Elastic wave propagation in noncentrosymmetric, isotropic media: dispersion and field equations. J. Appl. Phys. 63, 5246 (1988).
29.Nagle S.F., Lakhtakia A., and Thompson W.: Modal structures for axial wave propagation in a continuously twisted structurally chiral medium. J. Acoust. Soc. Am. 97, 42 (1995).
30.Tee K.F., Spadoni A., Scarpa F., and Ruzzene M.: Wave propagation in auxetic tetrachiral honeycombs. ASME J. Vibr. Acoust. 132, 031007 (2010).
31.Zhu R., Liu X.N., Hu G.K., Sun C.T., and Huang G.L.: Negative refraction of elastic waves at the deep-subwavelength scale in a single-phase metamaterial. Nat. Commun. 5, 5510 (2014).
32.Milton G.W., Briane M., and Willis J.R.: On cloaking for elasticity and physical equations with a transformation invariant form. New J. Phys. 8, 248 (2006).
33.Pendry J.B., Schurig D., and Smith D.R.: Controlling electromagnetic fields. Science 312, 1780 (2006).
34.Stenger N., Wilhelm M., and Wegener M.: Experiments on elastic cloaking in thin plates. Phys. Rev. Lett. 108, 014301 (2012).
35.Brule S., Javelaud E.H., Enoch S., and Guenneau S.: Experiments on seismic metamaterials: molding surface waves. Phys. Rev. Lett. 112, 133901 (2014).
36.Bückmann T., Kadic M., Schittny R., and Wegener M.: Mechanical cloak design by direct lattice transformation. Proc. Natl. Acad. Sci. USA 112, 4930 (2015).
37.Norris A.N.: Acoustic cloaking theory. Proc. R. Soc. A 464, 2411 (2008).
38.Norris A.N.: Acoustic metafluids. J. Acoust. Soc. Am. 125, 839 (2009).
39.Milton G.W. and Cherkaev A.: Which elasticity tensors are realizable? J. Eng. Mater. Technol. 117, 483 (1995).
40.Sigmund O.: Tailoring materials with prescribed elastic properties. Mech. Mater. 20, 351 (1995).
41.Kadic M., Bückmann T., Stenger N., Thiel M., and Wegener M.: On the practicability of pentamode mechanical metamaterials. Appl. Phys. Lett. 100, 191901 (2012).
42.Martin A., Kadic M., Schittny R., Bückmann T., and Wegener M.: Phonon band structures of three-dimensional pentamode metamaterials. Phys. Phys. B 86, 155116 (2012).
43.Schittny R., Bückmann T., Kadic M., and Wegener M.: Elastic measurements on macroscopic three-dimensional pentamode metamaterials. Appl. Phys. Lett. 103, 231905 (2013).
44.Ellenbroek W.G., Zeravcic Z., van Saarloos W., and van Hecke M.: Non-affine response: jammed packings vs. spring networks. Europhys. Lett. 87, 34004 (2009).
45.Kadic M., Bückmann T., Schittny R., Gumbsch P., and Wegener M.: Pentamode metamaterials with independently tailored bulk modulus and mass density. Phys. Rev. Appl. 2, 054007 (2014).
46.Kadic M., Bückmann T., Schittny R., and Wegener M.: On anisotropic versions of three-dimensional pentamode metamaterials. New J. Phys. 15, 023029 (2013).
47.Layman C.N., Naify C.J., Martin T.P., Calvo D.C., and Orris G.J.: Highly-anisotropic elements for acoustic pentamode applications. Phys. Rev. Lett. 111, 024302 (2013).
48.Milton G.W.: The Theory of Composites (Cambridge University Press, Cambridge, 2002).
49.Bückmann T., Thiel M., Kadic M., Schittny R., and Wegener M.: An elasto-mechanical unfeelability cloak made of pentamode metamaterials. Nat. Commun. 5, 4130 (2014).
50.Bückmann T., Schittny R., Thiel M., Kadic M., Milton G.W., and Wegener M.: On three-dimensional dilational elastic metamaterials. New J. Phys. 16, 033032 (2014).
51.Milton G.W. and Willis J.R.: On modifications of Newton's second law. Proc. R. Soc. A 463, 855 (2007).
52.Bückmann T., Kadic M., Schittny R., and Wegener M.: Mechanical metamaterials with anisotropic effective mass density tensor made from one constituent. Phys. Status Solidi B, in press (2015). DOI: 10.1002/pssb.201451698.
53.Wu Y., Lai Y., Sheng P., and Zhang Z.-Q.: Hybrid elastic solids. Nat. Mater. 10, 620 (2011).
54.Garcia-Chocano V.M., Christensen J., and Sanchez-Dehesa J.: Negative refraction and energy funneling by hyperbolic materials: an experimental demonstration in acoustics. Phys. Rev. Lett. 112, 144301 (2014).
55.Oh J.H., Seung H.M., and Kim Y.Y.: A truly hyperbolic elastic metamaterial lens. Appl. Phys. Lett. 104, 073503 (2014).
56.Gu Y., Luo X., and Ma H.: Low frequency elastic wave propagation in two dimensional locally resonant phononic crystal with asymmetric resonator. J. Appl. Phys. 105, 044903 (2009).
57.Liu A.P., Zhu R., Liu X.N., Hu G.K., and Huang G.L.: Multi-displacement microstructure continuum modeling of anisotropic. Wave Motion 49, 411 (2012).
58.Zhu R., Liu X.N., Huang G.L., Huang H.H., and Sun C.T.: Microstructural design and experimental validation of elastic metamaterial plates with anisotropic mass density. Phys. Rev. B 86, 144307 (2012).
59.Fleury R. and Alu A.: Extraordinary sound transmission through density-near-zero ultranarrow channels. Phys. Rev. Lett. 111, 055501 (2013).
60.Yao S., Zhou X., and Hu G.: Investigation of the negative-mass behaviours occurring below a cut-off frequency. New J. Phys. 12, 103025 (2010).
61.Hao R., Qiu C., Ye Y., Li C., Jia H., Ke M., and Liu Z.: Transmission enhancement of acoustic waves through a thin hard plate embedded with elastic inclusions. Appl. Phys. Lett. 101, 021910 (2012).
62.Christensen J., Liang Z., and Willatzen M.: Metadevices for the confinement of sound and broadband double-negativity behavior. Phys. Rev. B 88, 100301(R) (2013).
63.Peng P., Qiu C., Liu Z., and Wu Y.: Controlling elastic waves with small phononic crystals containing rigid inclusions. Eur. Phys. Lett. 106, 46003 (2014).
64.Flores-Mendez J. and Perez-Rodriguez F.: Metasolid with anisotropic mass density. Eur. Phys. Lett. 103, 54001 (2013).
65.Lang R.J.: Origami Design Secrets, 2nd ed. (CRC Press, Boca Raton, FL, 2013).
66.Schenk M. and Guest S.D.: Geometry of Miura-folded metamaterials. Proc. Natl. Acad. Sci. USA 110, 3276 (2013).
67.Castle T., Cho Y., Gong X., Jung E., Sussman D.M., Yang S., and Kamien R.D.: Making the cut: lattice kirigami rules. Phys. Rev. Lett. 113, 245502 (2014).
68.Waitukaitis S., Menaut R., Chen B.G., and van Hecke M.: Origami multistability: from single vertices to metasheets. Phys. Rev. Lett. 114, 055503 (2015).
69.Lechenault F., Thiria B., and Adda-Bedia M.: Mechanical response of a creased sheet. Phys. Rev. Lett. 112, 244301 (2014).
70.Silverberg J.L., Na J.-H., Evans A.A., Liu B., Hull T.C., Santangelo C.D., Lang R.J., Hayward R.C., and Cohen I.: Origami structures with a critical transition to bistability arising from hidden degrees of freedom. Nat. Mater. 14, 389 (2015).
71.Miura K.: Method of packaging and deployment of large membranes in space. Inst. Space Astronaut. Sci. Rep. 618, 1 (1985).
72.Wei Z.Y., Guo Z.V., Dudte L., Liang H.Y., and Mahadevan L.: Geometric mechanics of periodic pleated origami. Phys. Rev. Lett. 110, 215501 (2013).
73.Silverberg J.L., Evans A.A., McLeod L., Hayward R., Hull T., Santangelo C.D., and Cohen I.: Using origami design principles to fold reprogrammable mechanical metamaterials. Science 345, 647 (2014).
74.Lv C., Krishnaraju D., Konjevod G., Yu H., and Jiang H.: Origami based mechanical metamaterials. Sci. Rep. 4, 5979 (2014).
75.Wang P., Casadei F., Shan S., Weaver J.C., and Bertoldi K.: Harnessing buckling to design tunable locally resonant acoustic metamaterials. Phys. Rev. Lett. 113, 014301 (2014).
76.Shan S., Kang S.H., Wang P., Qu C., Shian S., Chen E.R., and Bertoldi K.: Harnessing multiple folding mechanisms in soft periodic structures for tunable control of elastic waves. Adv. Funct. Mater. 24, 4935 (2014).
77.Willatzen M. and Christensen J.: Acoustic gain in piezoelectric semiconductors at ε-near-zero response. Phys. Rev. B 89, 041201(R) (2014).
78.Florijn B., Coulais C., and van Hecke M.: Programmable mechanical metamaterials. Phys. Rev. Lett. 113, 175503 (2014).
79.Kang S.H., Shan S., Košmrlj A., Noorduin W.L., Shian S., Weaver J.C., Clarke D.R., and Bertoldi K.: Complex ordered patterns in mechanical instability induced geometrically frustrated triangular cellular structures. Phys. Rev. Lett. 112, 098701 (2014).
80.Milton G.W.: Complete characterization of the macroscopic deformations of periodic unimode metamaterials of rigid bars and pivots. J. Mech. Phys. Sol. 61, 1543 (2013).
81.Rand O. and Rovenski V.: Analytical Methods in Anisotropic Elasticity (Birkhäuser, Basel, 2005).
82.Banerjee B.: An Introduction to Metamaterials and Waves in Composites (CRC Press, Boca Raton, FL, 2011).
83.Gould Ph.L.: Introduction to Linear Elasticity (Springer, Heidelberg, New York, 2013).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Communications
  • ISSN: 2159-6859
  • EISSN: 2159-6867
  • URL: /core/journals/mrs-communications
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Altmetric attention score

Full text views

Total number of HTML views: 79
Total number of PDF views: 910 *
Loading metrics...

Abstract views

Total abstract views: 927 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 23rd November 2017. This data will be updated every 24 hours.