Skip to main content
×
Home
    • Aa
    • Aa

Vibrant times for mechanical metamaterials

  • Johan Christensen (a1), Muamer Kadic (a2), Oliver Kraft (a3) and Martin Wegener (a2) (a4)
Abstract
Abstract

Metamaterials are man-made designer matter that obtains its unusual effective properties by structure rather than chemistry. Building upon the success of electromagnetic and acoustic metamaterials, researchers working on mechanical metamaterials strive at obtaining extraordinary or extreme elasticity tensors and mass-density tensors to thereby mold static stress fields or the flow of longitudinal/transverse elastic vibrations in unprecedented ways. In this prospective paper, we focus on recent advances and remaining challenges in this emerging field. Examples are ultralight-weight, negative mass density, negative modulus, pentamode, anisotropic mass density, Origami, nonlinear, bistable, and reprogrammable mechanical metamaterials.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Vibrant times for mechanical metamaterials
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Vibrant times for mechanical metamaterials
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Vibrant times for mechanical metamaterials
      Available formats
      ×
Copyright
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited
Corresponding author
Address all correspondence to Johan Christensen atjochri@fotonik.dtu.dk
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

2. R.S. Lakes : Foam structures with negative Poisson's ratio. Science 235, 1038 (1987).

3. G.N. Greaves , A.L. Greer , R.S. Lakes , and T. Rouxel : Poisson's ratio and modern materials. Nat. Mater. 10, 823 (2011).

4. M. Moldovan : Sound and heat revolutions in phononics. Nature 503, 209 (2013).

5. M. Kadic , T. Bückmann , R. Schittny , and M. Wegener : Metamaterials beyond electromagnetism. Rep. Prog. Phys. 76, 126501 (2013).

6. N.A. Fleck , V.S. Deshpande , and M.F. Ashby : Micro-architectured materials: past, present and future. Proc. R. Soc. A 466, 2495 (2010).

7. T.A. Schaedler , A.J. Jacobsen , A. Torrents , A.E. Sorensen , J. Lian , J.R. Greer , L. Valdevit , and W.B. Carter : Ultralight metallic microlattices. Science 334, 962 (2011).

8. V.S. Deshpande , M.F. Ashby , and N.A. Fleck : Foam topology: bending versus stretching dominated architectures. Acta Mater. 49, 1035 (2001).

9. V.S. Deshpande , M.F. Ashby , and N.A. Fleck : Effective properties of the octet-truss lattice material. J. Mech. Phys. Solids 49, 1747 (2001).

10. X. Zheng , H. Lee , T.H. Weisgraber , M. Shusteff , J. DeOtte , E.B. Duoss , J.D. Kuntz , M.M. Biener , Q. Ge , J.A. Jackson , S.O. Kucheyev , N.X. Fang , and C.M. Spadaccini : Ultralight, ultrastiff, mechanical metamaterials. Science 344, 1373 (2014).

11. O. Kraft , P.A. Gruber , R.M. Mönig , and D. Weygand : Plasticity in confined dimensions. Annu. Rev. Mater. Res. 40, 293 (2010).

12. H. Gao , B. Ji , I.L. Jäger , E. Arzt , and P. Fratzl : Materials become insensitive to flaws at nanoscale: lessons from nature. Proc. Nat. Acad. Sci. USA 100, 5597 (2003).

13. L.R. Meza , S. Das , and J.R. Greer : Strong, lightweight, and recoverable three-dimensional ceramic nanolattices. Science 345, 1322 (2014).

14. J. Bauer , S. Hengsbach , I. Tesari , R. Schwaiger , and O. Kraft : High-strength cellular ceramic composites with 3D microarchitecture. Proc. Nat. Acad. Sci. USA 111, 2453 (2014).

15. J. Bauer , A. Schroer , R. Schwaiger , I. Tesari , C. Lange , L. Valdevit , and O. Kraft : Push-to-pull tensile testing of ultra-strong nanoscale ceramic–polymer composites made by additive manufacturing. Extreme Mech. Lett. 3, 105 (2015).

16. T. Bückmann , N. Stenger , M. Kadic , J. Kaschke , A. Frölich , T. Kennerknecht , C. Eberl , M. Thiel , and M. Wegener : Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography. Adv. Mater. 24, 2710 (2012).

17. L. Valdevit , A.J. Jacobsen , J.R. Greer , and W.B. Carter : Protocol for the optimal design of multifunctional structures: from hypersonics to micro-architected materials. J. Am. Ceram. Soc. 94, s15 (2011).

19. Z. Liu , X. Zhang , Y. Mao , Y.Y. Zhu , Z. Yang , C.T. Chan , and P. Sheng : Locally resonant sonic materials. Science 289, 1734 (2000).

20. H.H. Huang , C.T. Sun , and G.L. Huang : On the negative effective mass density in acoustic metamaterials. Int. J. Eng. Sci. 47, 610 (2009).

21. Y. Wu , Y. Lai , and Z.-Q. Zhang : Effective medium theory for elastic metamaterials in two dimensions. Phys. Rev. B 76, 205313 (2007).

22. Y. Ding , Z. Liu , C. Qiu , and J. Shi : Metamaterials with simultaneously negative bulk modulus and mass density. Phys. Rev. Lett. 99, 093904 (2007).

23. Y. Wu , Y. Lai , and Z.-Q. Zhang : Elastic metamaterials with simultaneously negative effective shear modulus and mass density. Phys. Rev. Lett. 107, 105506 (2011).

24. J. Li and C.T. Chan : Double-negative acoustic metamaterial. Phys. Rev. E 70, 055602(R) (2004).

25. T. Brunet , A. Merlin , B. Mascaro , K. Zimny , J. Leng , O. Poncelet , C. Aristégui , and O. Mondain-Monval : Soft 3D acoustic metamaterials with negative index. Nat. Mater. 14, 384 (2015).

26. Z.G. Nicolaou and A.E. Motter : Mechanical metamaterials with negative compressibility transitions. Nat. Mater. 11, 608 (2012).

28. A. Lakhtakia , V.V. Varadan , and V.K. Varadan : Elastic wave propagation in noncentrosymmetric, isotropic media: dispersion and field equations. J. Appl. Phys. 63, 5246 (1988).

29. S.F. Nagle , A. Lakhtakia , and W. Thompson : Modal structures for axial wave propagation in a continuously twisted structurally chiral medium. J. Acoust. Soc. Am. 97, 42 (1995).

30. K.F. Tee , A. Spadoni , F. Scarpa , and M. Ruzzene : Wave propagation in auxetic tetrachiral honeycombs. ASME J. Vibr. Acoust. 132, 031007 (2010).

31. R. Zhu , X.N. Liu , G.K. Hu , C.T. Sun , and G.L. Huang : Negative refraction of elastic waves at the deep-subwavelength scale in a single-phase metamaterial. Nat. Commun. 5, 5510 (2014).

32. G.W. Milton , M. Briane , and J.R. Willis : On cloaking for elasticity and physical equations with a transformation invariant form. New J. Phys. 8, 248 (2006).

33. J.B. Pendry , D. Schurig , and D.R. Smith : Controlling electromagnetic fields. Science 312, 1780 (2006).

34. N. Stenger , M. Wilhelm , and M. Wegener : Experiments on elastic cloaking in thin plates. Phys. Rev. Lett. 108, 014301 (2012).

35. S. Brule , E.H. Javelaud , S. Enoch , and S. Guenneau : Experiments on seismic metamaterials: molding surface waves. Phys. Rev. Lett. 112, 133901 (2014).

36. T. Bückmann , M. Kadic , R. Schittny , and M. Wegener : Mechanical cloak design by direct lattice transformation. Proc. Natl. Acad. Sci. USA 112, 4930 (2015).

37. A.N. Norris : Acoustic cloaking theory. Proc. R. Soc. A 464, 2411 (2008).

38. A.N. Norris : Acoustic metafluids. J. Acoust. Soc. Am. 125, 839 (2009).

39. G.W. Milton and A. Cherkaev : Which elasticity tensors are realizable? J. Eng. Mater. Technol. 117, 483 (1995).

40. O. Sigmund : Tailoring materials with prescribed elastic properties. Mech. Mater. 20, 351 (1995).

41. M. Kadic , T. Bückmann , N. Stenger , M. Thiel , and M. Wegener : On the practicability of pentamode mechanical metamaterials. Appl. Phys. Lett. 100, 191901 (2012).

42. A. Martin , M. Kadic , R. Schittny , T. Bückmann , and M. Wegener : Phonon band structures of three-dimensional pentamode metamaterials. Phys. Phys. B 86, 155116 (2012).

43. R. Schittny , T. Bückmann , M. Kadic , and M. Wegener : Elastic measurements on macroscopic three-dimensional pentamode metamaterials. Appl. Phys. Lett. 103, 231905 (2013).

44. W.G. Ellenbroek , Z. Zeravcic , W. van Saarloos , and M. van Hecke : Non-affine response: jammed packings vs. spring networks. Europhys. Lett. 87, 34004 (2009).

45. M. Kadic , T. Bückmann , R. Schittny , P. Gumbsch , and M. Wegener : Pentamode metamaterials with independently tailored bulk modulus and mass density. Phys. Rev. Appl. 2, 054007 (2014).

46. M. Kadic , T. Bückmann , R. Schittny , and M. Wegener : On anisotropic versions of three-dimensional pentamode metamaterials. New J. Phys. 15, 023029 (2013).

47. C.N. Layman , C.J. Naify , T.P. Martin , D.C. Calvo , and G.J. Orris : Highly-anisotropic elements for acoustic pentamode applications. Phys. Rev. Lett. 111, 024302 (2013).

49. T. Bückmann , M. Thiel , M. Kadic , R. Schittny , and M. Wegener : An elasto-mechanical unfeelability cloak made of pentamode metamaterials. Nat. Commun. 5, 4130 (2014).

50. T. Bückmann , R. Schittny , M. Thiel , M. Kadic , G.W. Milton , and M. Wegener : On three-dimensional dilational elastic metamaterials. New J. Phys. 16, 033032 (2014).

51. G.W. Milton and J.R. Willis : On modifications of Newton's second law. Proc. R. Soc. A 463, 855 (2007).

52. T. Bückmann , M. Kadic , R. Schittny , and M. Wegener : Mechanical metamaterials with anisotropic effective mass density tensor made from one constituent. Phys. Status Solidi B, in press (2015). DOI: 10.1002/pssb.201451698.

54. V.M. Garcia-Chocano , J. Christensen , and J. Sanchez-Dehesa : Negative refraction and energy funneling by hyperbolic materials: an experimental demonstration in acoustics. Phys. Rev. Lett. 112, 144301 (2014).

55. J.H. Oh , H.M. Seung , and Y.Y. Kim : A truly hyperbolic elastic metamaterial lens. Appl. Phys. Lett. 104, 073503 (2014).

56. Y. Gu , X. Luo , and H. Ma : Low frequency elastic wave propagation in two dimensional locally resonant phononic crystal with asymmetric resonator. J. Appl. Phys. 105, 044903 (2009).

57. A.P. Liu , R. Zhu , X.N. Liu , G.K. Hu , and G.L. Huang : Multi-displacement microstructure continuum modeling of anisotropic. Wave Motion 49, 411 (2012).

58. R. Zhu , X.N. Liu , G.L. Huang , H.H. Huang , and C.T. Sun : Microstructural design and experimental validation of elastic metamaterial plates with anisotropic mass density. Phys. Rev. B 86, 144307 (2012).

59. R. Fleury and A. Alu : Extraordinary sound transmission through density-near-zero ultranarrow channels. Phys. Rev. Lett. 111, 055501 (2013).

60. S. Yao , X. Zhou , and G. Hu : Investigation of the negative-mass behaviours occurring below a cut-off frequency. New J. Phys. 12, 103025 (2010).

61. R. Hao , C. Qiu , Y. Ye , C. Li , H. Jia , M. Ke , and Z. Liu : Transmission enhancement of acoustic waves through a thin hard plate embedded with elastic inclusions. Appl. Phys. Lett. 101, 021910 (2012).

62. J. Christensen , Z. Liang , and M. Willatzen : Metadevices for the confinement of sound and broadband double-negativity behavior. Phys. Rev. B 88, 100301(R) (2013).

63. P. Peng , C. Qiu , Z. Liu , and Y. Wu : Controlling elastic waves with small phononic crystals containing rigid inclusions. Eur. Phys. Lett. 106, 46003 (2014).

64. J. Flores-Mendez and F. Perez-Rodriguez : Metasolid with anisotropic mass density. Eur. Phys. Lett. 103, 54001 (2013).

66. M. Schenk and S.D. Guest : Geometry of Miura-folded metamaterials. Proc. Natl. Acad. Sci. USA 110, 3276 (2013).

67. T. Castle , Y. Cho , X. Gong , E. Jung , D.M. Sussman , S. Yang , and R.D. Kamien : Making the cut: lattice kirigami rules. Phys. Rev. Lett. 113, 245502 (2014).

68. S. Waitukaitis , R. Menaut , B.G. Chen , and M. van Hecke : Origami multistability: from single vertices to metasheets. Phys. Rev. Lett. 114, 055503 (2015).

69. F. Lechenault , B. Thiria , and M. Adda-Bedia : Mechanical response of a creased sheet. Phys. Rev. Lett. 112, 244301 (2014).

70. J.L. Silverberg , J.-H. Na , A.A. Evans , B. Liu , T.C. Hull , C.D. Santangelo , R.J. Lang , R.C. Hayward , and I. Cohen : Origami structures with a critical transition to bistability arising from hidden degrees of freedom. Nat. Mater. 14, 389 (2015).

72. Z.Y. Wei , Z.V. Guo , L. Dudte , H.Y. Liang , and L. Mahadevan : Geometric mechanics of periodic pleated origami. Phys. Rev. Lett. 110, 215501 (2013).

73. J.L. Silverberg , A.A. Evans , L. McLeod , R. Hayward , T. Hull , C.D. Santangelo , and I. Cohen : Using origami design principles to fold reprogrammable mechanical metamaterials. Science 345, 647 (2014).

74. C. Lv , D. Krishnaraju , G. Konjevod , H. Yu , and H. Jiang : Origami based mechanical metamaterials. Sci. Rep. 4, 5979 (2014).

75. P. Wang , F. Casadei , S. Shan , J.C. Weaver , and K. Bertoldi : Harnessing buckling to design tunable locally resonant acoustic metamaterials. Phys. Rev. Lett. 113, 014301 (2014).

76. S. Shan , S.H. Kang , P. Wang , C. Qu , S. Shian , E.R. Chen , and K. Bertoldi : Harnessing multiple folding mechanisms in soft periodic structures for tunable control of elastic waves. Adv. Funct. Mater. 24, 4935 (2014).

77. M. Willatzen and J. Christensen : Acoustic gain in piezoelectric semiconductors at ε-near-zero response. Phys. Rev. B 89, 041201(R) (2014).

78. B. Florijn , C. Coulais , and M. van Hecke : Programmable mechanical metamaterials. Phys. Rev. Lett. 113, 175503 (2014).

79. S.H. Kang , S. Shan , A. Košmrlj , W.L. Noorduin , S. Shian , J.C. Weaver , D.R. Clarke , and K. Bertoldi : Complex ordered patterns in mechanical instability induced geometrically frustrated triangular cellular structures. Phys. Rev. Lett. 112, 098701 (2014).

80. G.W. Milton : Complete characterization of the macroscopic deformations of periodic unimode metamaterials of rigid bars and pivots. J. Mech. Phys. Sol. 61, 1543 (2013).

83. Ph.L. Gould : Introduction to Linear Elasticity (Springer, Heidelberg, New York, 2013).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Communications
  • ISSN: 2159-6859
  • EISSN: 2159-6867
  • URL: /core/journals/mrs-communications
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 45
Total number of PDF views: 496 *
Loading metrics...

Abstract views

Total abstract views: 474 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 29th March 2017. This data will be updated every 24 hours.