Skip to main content
×
×
Home

Vortex glass-liquid transition and activated flux motion in an epitaxial, superconducting NdFeAs(O,F) thin film

  • J. Hänisch (a1), K. Iida (a2), T. Ohmura (a3), T. Matsumoto (a2), T. Hatano (a2), M. Langer (a1), S. Kauffmann-Weiss (a1), H. Ikuta (a2) and B. Holzapfel (a1)...
Abstract

An epitaxial NdFeAs(O,F) thin film of 90 nm thickness grown by molecular beam epitaxy on MgO single crystal with Tc = 44.2 K has been investigated regarding a possible vortex glass–liquid transition. The voltage–current characteristics show excellent scalability according to the vortex-glass model with a static critical exponent ν of around 1.35 and a temperature-dependent dynamic exponent z increasing from 7.8 to 9.0 for the investigated temperature range. The large and non-constant z values are discussed in the frame of 3D vortex glass, thermally activated flux motion, and inhomogeneity broadening.

Copyright
Corresponding author
Address all correspondence to J. Hänisch at jens.haenisch@kit.edu
References
Hide All
1.Koch, R., Foglietti, V., Gallagher, W., Koren, G., Gupta, A., and Fisher, M.: Experimental evidence for vortex-glass superconductivity in Y-Ba-Cu-O. Phys. Rev. Lett. 63, 1511 (1989).
2.Chang, H., Luo, J., Wu, C., Hsu, F., Huang, T., Wu, P., Wu, M., and Wang, M.: The vortex state of FeSe1−xTex superconducting thin films. Supercond. Sci. Technol. 24, 105011 (2011).
3.Song, Y., Kang, B., Rhee, J.-S., and Kwon, Y.: Thermally activated flux flow and fluctuation conductivity in LiFeAs single crystal. EPL 97, 47003 (2012).
4.Hao, F., Zhang, M., Teng, M., Yin, Y., Jiao, W., Cao, G., and Li, X.: Angle-resolved vortex glass transition and pinning properties in BaFe1.8Co0.2As2 single crystals. J. Appl. Phys. 117, 173901 (2015).
5.Lee, H., Bartkowiak, M., Kim, J., and Lee, H.-J.: Magnetic-field-induced crossover of vortex-line coupling in SmFeAsO0.85 single crystal. Phys. Rev. B 82, 104523 (2010).
6.Zhang, Y., Ren, Z., and Zhao, Z.: Thermally activated energy and critical magnetic fields of SmFeAsO0.9F0.1. Supercond. Sci. Technol. 22, 065012 (2009).
7.Liu, Y., Chai, Y., Kim, H.-J., Stewart, G., and Kim, K.: Current-voltage characteristics of NdFeAsO0.85F0.15 and NdFeAsO0.85 superconductors. J. Korean Phys. Soc. 55, L383 (2009).
8.Xie, R., Lv, B., Shao, H., and Wu, X.: Universal scaling analysis on vortex-glass state of high-temperature superconductor HgBa2Ca2Cu3O8+δ. IEEE Trans. Appl. Supercond. 47, 2600 (2011).
9.Kawaguchi, T., Uemura, H., Ohno, T., Tabuchi, M., Ujihara, T., Takeda, Y., and Ikuta, H.: Molecular beam epitaxy growth of superconducting NdFeAs(O,F) thin films using a F-getter and a novel F-doping method. Appl. Phys. Express 4, 083102 (2011).
10.Palstra, T., Batlogg, B., Dover, R.V., Schneemeyer, L., and Waszczak, J.: Dissipative flux motion in high-temperature superconductors. Phys. Rev. B 41, 6621 (1990).
11.Zhang, Y., Wen, H., and Wang, Z.: Thermally activated energies of YBa2Cu3O7−δ and Y0.8Ca0.2Ba2Cu3O7−δ thin films. Phys. Rev. B 74, 144521 (2006).
12.Jaroszynski, J., Hunte, F., Balicas, L., Jo, Y.-J., Raicevic, I., Gurevich, A., Larbalestier, D., Balakirev, F., Fang, L., Cheng, P., Jia, Y., and Wen, H.: Upper critical fields and thermally-activated transport of NdFeAsO0.7F0.3 single crystal. Phys. Rev. B 78, 174523 (2008).
13.Iida, K., Hänisch, J., Tarantini, C., Kurth, F., Jaroszynski, J., Ueda, S., Naito, M., Ichinose, A., Tsukada, I., Reich, E., Grinenko, V., Schultz, L., and Holzapfel, B.: Oxypnictide SmFeAs(O,F) superconductor: a candidate for high-field magnet applications. Sci. Rep. 3, 2139 (2013).
14.Kidszun, M., Haindl, S., Reich, E., Hänisch, J., Iida, K., Schultz, L., and Holzapfel, B.: Epitaxial LaFeAsO1−xFx thin films grown by pulsed laser deposition. Supercond. Sci. Technol. 23, 022002 (2010).
15.Shahbazi, M., Wang, X., Shekhar, C., Srivastava, O., Lin, Z., Zhu, J., and Dou, S.: Upper critical field and thermally activated flux flow in LaFeAsO1−xFx. J. Appl. Phys. 109, 07E162 (2011).
16.Thompson, J., Sorge, K., Cantoni, C., Kerchner, H., Christen, D., and Paranthaman, M.: Vortex pinning and slow creep in high-J c MgB2 thin films: a magnetic and transport study. Supercond. Sci. Technol. 18, 970 (2005).
17.Yamasaki, H., Endo, K., Kosaka, S., Umeda, M., Yoshida, S., and Kajimura, K.: Quasi-two-dimensional vortex-glass transition observed in epitaxial Bi2Sr2Ca2Cu3Ox films. Phys. Rev. B 50, 12959 (1994).
18.Safar, H., Foltyn, S., Jia, Q., and Maley, M.: Bose glass vortex phase transition in twinned YBa2Cu307−δ superconductors. Philos. Mag. B 74, 647 (1996).
19.Kim, H.-J., Kang, W., Choi, E.-M., Kim, M.-S., Kim, K.H., and Lee, S.-I.: High current-carrying capability in c-axis-oriented superconducting MgB2 thin films. Phys. Rev. Lett. 87, 087002 (2001).
20.Koch, R., Foglietti, V., and Fisher, M.: Reply. Phys. Rev. Lett. 64, 2586 (1990).
21.Heinig, N., Redwing, R., Nordman, J., and Larbalestier, D.: Strong to weak coupling transition in low misorientation angle thin film YBa2Cu3O7−x bicrystals. Phys. Rev. B 60, 1409 (1999).
22.Trastoy, J., Ruoco, V., Ulysse, C., Bernard, R., Palau, A., Puig, T., Faini, G., Lesueur, J., Briatico, J., and Villegas, J.: Unusual magneto-transport of YBa2Cu3O7−δ films due to the interplay of anisotropy, random disorder and nanoscale periodic pinning. New J. Phys. 15, 103022 (2013).
23.Tarantini, C., Iida, K., Sumiya, N., Chihara, M., Hatano, T., Ikuta, H., Singh, R., Newman, N., and Larbalestier, D.: Effect of α-particle irradiation on a NdFeAs(O,F) thin film. Supercond. Sci. Technol. 31, 034002 (2018).
24.Liu, S., Wu, G., Xu, X., Wu, J., and Shao, H.: Scaling of the vortex–liquid resistivity in high temperature superconductors. Supercond. Sci. Technol. 18, 1332 (2005).
25.Andersson, M., Rydh, A., and Rapp, Ö.: Scaling of the vortex-liquid resistivity in optimally doped and oxygen-deficient YBa2Cu3O7−δ single crystals. Phys. Rev. B 63, 184511 (2001).
26.Ghorbani, S., Wang, X., Shahbazi, M., Dou, S., Choi, K., and Lin, C.: Flux pinning and vortex transitions in doped BaFe2As2 single crystals. Appl. Phys. Lett. 100, 072603 (2012).
27.Yi, X., Wang, C., Tang, Q., Peng, T., Qiu, Y., Xu, J., Sun, H., Luo, Y., and Yu, B.: Vortex phase transition and anisotropy behavior of optimized (Li1−xFexOH)FeSe single crystals. Supercond. Sci. Technol. 29, 105015 (2016).
28.Voss-de Haan, M., Jakob, G., and Adrian, H.: High dynamic exponents in vortex glass transitions: dependence of critical scaling on the electric-field range. Phys. Rev. B 60, 12443 (1999).
29.Coppersmith, S., Inui, M., and Littlewood, P.: Comment on experimental evidence for vortex-glass superconductivity in Y-Ba-Cu-O. Phys. Rev. Lett. 64, 2585 (1990).
30.Hu, X., He, L., Ning, Z., Chen, K., Yin, L., Lu, G., Xu, X., Guo, J., Wang, F., Li, C., and Yin, D.: Critical scaling of extended power law I -V isotherms near vortex glass transition. Chin. Phys. Lett. 23, 3349 (2006).
31.Strachan, D., Sullivan, M., Fournier, P., Pai, S., Venkatesan, T., and Lobb, C.: Do superconductors have zero resistance in a magnetic field? Phys. Rev. Lett. 87, 067007 (2001).
32.Sullivan, M., Frederiksen, T., Repaci, J., Strachan, D., Ott, R., and Lobb, C.: Normal-superconducting phase transition mimicked by current noise. Phys. Rev. B 70, 140503(R) (2004).
33.Matsushita, T., Tohdoh, T., and Ihara, N.: Effects of inhomogeneous flux pinning strength and flux flow on scaling of current-voltage characteristics in high-temperature superconductors. Physica C 259, 321 (1996).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Communications
  • ISSN: 2159-6859
  • EISSN: 2159-6867
  • URL: /core/journals/mrs-communications
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed