Hostname: page-component-7c8c6479df-27gpq Total loading time: 0 Render date: 2024-03-18T16:40:40.250Z Has data issue: false hasContentIssue false

The rectenna device: From theory to practice (a review)

Published online by Cambridge University Press:  03 July 2014

Evgeniy Donchev*
Affiliation:
Department of Materials, Imperial College London, London SW7 2AZ, United Kingdom
Jing S. Pang
Affiliation:
Department of Materials, Imperial College London, London SW7 2AZ, United Kingdom
Peter M. Gammon
Affiliation:
School of Engineering, University of Warwick, Coventry CV4 7AL, United Kingdom
Anthony Centeno
Affiliation:
iKhoza Nano-Characterization, Structural Control and Processing, Malaysia-Japan International Institute of Technology, Kuala Lumpur 54100, Malaysia
Fang Xie
Affiliation:
Department of Materials, Imperial College London, London SW7 2AZ, United Kingdom
Peter K. Petrov
Affiliation:
Department of Materials, Imperial College London, London SW7 2AZ, United Kingdom
Jonathan D. Breeze
Affiliation:
Department of Materials, Imperial College London, London SW7 2AZ, United Kingdom
Mary P. Ryan
Affiliation:
Department of Materials, Imperial College London, London SW7 2AZ, United Kingdom
D. Jason Riley
Affiliation:
Department of Materials, Imperial College London, London SW7 2AZ, United Kingdom
Neil McN. Alford
Affiliation:
Department of Materials, Imperial College London, London SW7 2AZ, United Kingdom
*
Address all correspondence to Evgeniy Donchev at evgeniy.donchev07@imperial.ac.uk
Get access

Abstract

This review article provides the state-of-art research and developments of the rectenna device and its two main components – the antenna and the rectifier. Furthermore, the history, efficiency trends, and socioeconomic impact of its research are also featured.

The rectenna (RECTifying antENNA), which was first demonstrated by William C. Brown in 1964 as a receiver for microwave power transmission, is now increasingly researched as a means of harvesting solar radiation. Tapping into the growing photovoltaic market, the attraction of the rectenna concept is the potential for devices that, in theory, are not limited in efficiency by the Shockley–Queisser limit. In this review, the history and operation of this 40-year old device concept are explored in the context of power transmission and the ever increasing interest in its potential applications at terahertz frequencies, through the infrared and visible spectra. Recent modeling approaches that have predicted controversially high efficiency values at these frequencies are critically examined. It is proposed that to unlock any of the promised potential in the solar rectenna concept, there is a need for each constituent part to be improved beyond the current best performance, with the existing nanometer scale antennas, the rectification and the impedance matching solutions all falling short of the necessary efficiencies at terahertz frequencies. Advances in the fabrication, characterization, and understanding of the antenna and the rectifier are reviewed, and common solar rectenna design approaches are summarized. Finally, the socioeconomic impact of success in this field is discussed and future work is proposed.

Type
Review
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES:

Shockley, W. and Quiesser, H.J.: Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32(3), 510519 (1961).Google Scholar
Henry, C.H.: Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells. J. Appl. Phys. 51, 44944500 (1980).CrossRefGoogle Scholar
Corkish, R., Greem, M.A., and Puzzer, T.: Solar energy collection by antennas. Sol. Energy 73(6), 395401 (2002).Google Scholar
Goswami, D.Y., Vijayaraghavan, S., Lu, S., and Tamm, G.: New and emerging developments in solar energy. Sol. Energy 76, 3343 (2004).Google Scholar
Berland, B.: Photovoltaic Technologies Beyond the Horizon: Optical Rectenna Solar Cell, subcontractor report; National Renewable Energy Laboratory, 2002. Found online at: http://www.nrel.gov/docs/fy03osti/33263.pdf.Google Scholar
McSpadden, J.O., Fan, L., and Chang, K.: Design and experiments of a high-conversion-efficiency 5.8-GHz rectenna. IEEE Trans. Microwave Theory Tech. 46(12), 20532060 (1998).Google Scholar
Nahas, J.J.: Modeling and computer simulation of a microwave-to-DC energy conversion element. IEEE Trans. Microwave Theory Tech. 2312, 10301035 (1975).Google Scholar
Razban, T., Bouthinon, M., and Coumes, A.: Microstrip circuit for converting microwave low power to DC energy. IEE Proc. 132(2), 107109 (1985).Google Scholar
Mlinar, V.: Engineered nanomaterials for solar energy conversion. Nanotechnology 24, 042001 (2013).CrossRefGoogle ScholarPubMed
Moddel, G. & Grover, S., eds.: Rectenna Solar Cells; Springer: New York, 2013.Google Scholar
Zhu, Z., Joshi, S., Pelz, B., and Moddel, G.: Overview of optical rectennas for solar energy harvesting. Proc. SPIE 8824, 882400 (2013).Google Scholar
Bailey, R.L.: A proposed new concept for a solar-energy converter. J. Eng. Power 94, 7377 (1972).Google Scholar
Fletcher, J.C. and Bailey, R.L.: Electromagnetic wave energy converter. U.S. Patent 3 760 257, 1973.Google Scholar
Brown, W.C.: The history of power transmission by radio waves. IEEE Trans. Microwave Theory Tech. 32(9), 12301242 (1984).Google Scholar
Brown, W.C.: The microwave powered helicopter. J. Microwave Power 1(1) (Symposium on Microwave Power, University of Alberta, March 24th, 1966).Google Scholar
Kraus, J.D.: Antennas, 2nd ed.; McGraw-Hill: New York, 1988.Google Scholar
Miskovsky, N.M., Cutler, P.H., Mayer, A., Weiss, B.L., Willis, B., Sullivan, T.E., and Lerner, P.B.: Nanoscale devices for rectification of high frequency radiation from the infrared through the visible: A new approach. J. Nanotechnol, 512379 (2012).Google Scholar
Hertz, H.: Dictionary of Scientific Biography, Vol. VI; Scribner: New York, 2007, pp. 340349.Google Scholar
Okress, E.C., Ed.: Microwave Power Engineering, Vols. I, II; Academic Press: New York, 1968.Google Scholar
George, R.H.: Solid state power rectifications. In Microwave Power Engineering, Vol. I; Okress, E.C., ed.; Academic Press: New York, 1968, pp. 275294.Google Scholar
Brown, W.C., George, R.H., Heenan, N.I., and Wonson, R.C.: Microwave to dc converter. U.S. Patent 3434678, March 26, 1969.Google Scholar
Glaser, P.E.: Power from the sun, its future. Science 162, 857886 (1968).Google Scholar
Brown, W.C.: Satellite solar power station and microwave transmission to earth. J. Microwave Power 5(4), (1970).Google Scholar
Brown, W.C. and Maynard, O.E.: Microwave Power Transmission in the Satellite Solar Power Station System, Raytheon Report ER 72-4038, January 27, 1972.Google Scholar
Brown, W.C.: Satellite power stations - A new source of energy? IEEE Spectrum 10(3), 3847 (1973).Google Scholar
Glaser, P.E., Maynard, O.E., Macfcovciak, J. Jr., and Ralph, E.L.: Feasibility Study of a Satellite Solar Power Station; NASA Lewis Research Center: Cleveland, OH, 1974, CR-2357, NTIS N74-N17784.Google Scholar
Glaser, P.E.: Method and apparatus for converting solar radiation to electrical power. U.S. Patent 3 781 647, 1973.Google Scholar
Shimokura, N., Kaya, N., Shinohara, N., and Matsumoto, H.: Point-to-point microwave power transmission experiment. Trans. Inst. Elect. Eng. Jpn. B 116(6), 648653 (1996).Google Scholar
Shinohara, N. and Matsumoto, H.: Experimental study of large rectenna array for microwave energy transmission. IEEE Trans. Microwave Theory Tech. 46(3), 261268 (1998).Google Scholar
Glaser, P.E.: An overview of the solar power satellite option. IEEE Trans. Microwave Theory Tech. 40(6), 12301238 (1992).Google Scholar
McSpadden, J.O., Little, F.E., Duke, M.B., and Ignatiev, A.: An in-space wireless energy transmission experiment. In Proc. IECEC Energy Conversion Engineering Conf. Vol. 1, pp. 468473 (1996).Google Scholar
Yoo, T. and Chang, K.: Theoretical and experimental development of 10 and 35 GHz rectennas. IEEE Trans. Microwave Theory Tech. 40, 12591266 (1992).Google Scholar
Epp, L.W., Khan, A.R., Smith, H.K., and Smith, R.P.: A compact dual-polarized 8.51-GHz rectenna for high-voltage (50 V) actuator applications. IEEE Trans. Microwave Theory Tech. 48, 111120 (2000).Google Scholar
Fujino, Y., Ito, T., Fujita, M., Kaya, N., Matsumoto, H., Kawabata, K., Sawada, H., and Onodera, T.: A driving test of a small DC motor with a rectenna array. IEICE Trans. Commun. E77-B(4), 526528 (1994).Google Scholar
Hagerty, J.A., Helmbrecht, F.B., McCalpin, W.H., Zane, R., and Popović, Z.B.: Recycling ambient microwave energy with broad-band rectenna arrays. IEEE Trans. Microwave Theory Tech. 52(3), 10141024 (2004).Google Scholar
Yang, X., Jiang, C., Elsherbeni, A.Z., Yang, F., and Wang, Y.Q.: A novel compact printed rectenna for data communication systems. IEEE Trans. Antennas Propag. 61(5), 25322539 (2013).Google Scholar
Bailey, R.L., Callahan, P.D., and Zahn, M.: Electromagnetic Wave Energy Conversion Research, Final Report, April-30 September. NASA-CR-145876, 1975.Google Scholar
Marks, A.M.: Device for conversion of light power to electric power. U.S. Patent 4 445 050, 1984.Google Scholar
Marks, A.M.: Ordered dipolar light-electric power converter. U.S. Patent 4 574 161, 1986.Google Scholar
Marks, A.M.: Femto diode and applications. U.S. Patent 4 720 642, 1988.Google Scholar
Marks, A.M.: Lighting device with quantum electric/light power converters. U.S. Patent 4 972 094, 1990.Google Scholar
Lin, G.H., Abdu, R., and Bockris, J.O.M.: Investigation of resonance light absorption and rectification by subnanostructures. J. Appl. Phys. 80, 565568 (1996).Google Scholar
Gustafson, T.K. and Billman, K.: Metal-oxide-metal optical diodes. Ames. R.C. Rsch. Review, NASA J. 205208 (1974).Google Scholar
Strassner, B. and Chang, K.: Microwave power transmission: Historical milestones and system components. Proc. IEEE 101(6), 13791395 (2013).CrossRefGoogle Scholar
Dickinson, R.M. and Brown, W.C.: Radiated Microwave Power Transmission System Efficiency Measurements, Tech. Memo 33-727; Jet Propulsion Lab., California Inst. Technol.: Pasadena, CA, Mar. 15, 1975.Google Scholar
Konovaltsev, A.A., Luchaninov, Y.A., Omarov, M.A., and Shokalo, V.M.: Developing wireless energy transfer systems using microwave beams: Applications and prospects. Telecom. Radio Eng. 55(2), 2129 (2001).Google Scholar
McSpadden, J.O., Yoo, T.W., and Chang, K.: Theoretical and experimental investigation of a rectenna element for microwave power transmission. IEEE Trans. Microwave Theory Tech. 40(12), 23592366 (1992).Google Scholar
Brown, W.C. and Triner, J.F.: Experimental thin-film, etched-circuit rectenna. Microwave Symp. K-4, 185187 (1982).Google Scholar
Zbitou, J., Latrach, M., and Toutain, S.: Hybrid rectenna and monolithic integrated zero-bias microwave rectifier. IEEE Trans. Microwave Theory Tech. 54(1), 147152 (2006).Google Scholar
Takhedmit, H., Cirio, L., Bellal, S., Delcroix, D., and Picon, O.: Compact and efficient 2.45 GHz circularly polarised shorted ring-slot rectenna. Electron. Lett. 48(5), 253254 (2012).Google Scholar
Sun, H., Guo, Y.-X., and Zhong, Z.: A high-sensitivity 2.45 GHz rectenna for low input power energy harvesting. In IEEE Antennas and Propagation Society International Symposium (APSURSI), 2012.Google Scholar
Sun, H., Guo, Y.-X., He, M., and Zhong, Z.: Design of a high-efficiency 2.45-GHz rectenna for low-input-power energy harvesting. IEEE Antennas Wireless Propag. Lett. 11, 929932 (2012).Google Scholar
Brown, W.C. and Kim, C.K.: Recent progress in power reception efficiency in a free-space microwave power transmission system. Microwave Symp. Dig. 74(1), 332333 (1974).Google Scholar
Gutmann, R.J. and Borrego, J.M.: Power combining in an array of microwave power rectifiers. IEEE Trans. Microwave Theory Tech. 27(12), 958968 (1979).Google Scholar
Heikkinen, J. and Kivikoski, M.: A novel dual-frequency circularly polarized rectenna. IEEE Antennas Wireless Propag. Lett. 2, 330333 (2003).CrossRefGoogle Scholar
Suh, Y.-H. and Chang, K.: A high-efficiency dual-frequency rectenna for 2.45- and 5.8-GHz wireless power transmission. IEEE Trans. Microwave Theory Tech. 50(7), 17841789 (2002).CrossRefGoogle Scholar
Ren, Y.-J., Farooqui, M.F., and Chang, K.: A compact dual-frequency rectifying antenna with high-orders harmonic rejection. IEEE Trans. Antennas Propag. 55(7), 21102113 (2007).Google Scholar
Ito, T., Fujino, Y., and Fujita, M.: Fundamental experiment of a rectenna array for microwave power reception, IEICE Trans. Commun. E76-B(12), 15081513 (1993).Google Scholar
Park, J.-Y., Han, S.-M., and Itoh, T.: A rectenna design with harmonic-rejecting circular-sector antenna. IEEE Antennas Wireless Propag. Lett. 3, 5254 (2004).Google Scholar
Gao, Y.-Y., Yang, X.-X., Jiang, C., and Zhou, J.-Y.: A circularly polarized rectenna with low profile for wireless power transmission. Prog. Electromag. Res. Lett. 13, 4149 (2010).Google Scholar
McSpadden, J.O., Fan, L., and Chang, K.: A high-conversion-efficiency 5.8-GHz rectenna. Microwave Symp., IEEE MTT-S Dig. WE2B-6, 547550 (1997).Google Scholar
Bharj, S.S., Camisa, R., Grober, S., Wozniak, F., and Pendleton, E.: High efficiency C-band 1000 element rectenna array for microwave powered application. Microwave Symp., IEEE MTT-S Dig. IF1 G-1, 301303 (1992).Google Scholar
Suh, Y., Wang, C., and Chang, K.: Circularly polarised truncated-corner square patch microstrip rectenna for wireless power transmission. Electron. Lett. 36(7), 600602 (2000).Google Scholar
Strassner, B. and Chang, K.: Highly efficient C-band circularly polarized rectifying antenna array for wireless microwave power transmission. IEEE Trans. Antennas Propag. 51(6), 13471356 (2003).Google Scholar
Strassner, B. and Chang, K.: A circularly polarized rectifying antenna array for wireless microwave power transmission with over 78% efficiency. IEEE MTT-S Int. Microwave Symp. Dig. 3, 15351538 (2002).Google Scholar
Ali, M., Yang, G., and Dougal, R.: A new circularly polarized rectenna for wireless power transmission and data communication. IEEE Antennas Wireless Propag. Lett. 4, 205208 (2005).Google Scholar
Ali, M., Yang, G., and Dougal, R.: Miniature circularly polarized rectenna with reduced out-of-band harmonics. IEEE Antennas Wireless Propag. Lett. 5, 107110 (2006).Google Scholar
Ren, Y.-J. and Chang, K.: 5.8 GHz broadened beam-width rectifying antennas using non-uniform antenna arrays. In IEEE Antennas and Propagation Society International Symposium, 2006, pp. 867870.Google Scholar
Yang, X.-X., Jiang, C., Elsherbeni, A.Z., Yang, F., and Wang, Y.-Q.: A novel compact printed rectenna for communication systems. In Power and Energy Engineering Conference (APPEEC), 2012.Google Scholar
Fujimori, K., Tada, K., Ueda, Y., Sanagi, M., and Nogi, S.: Development of high efficiency rectification circuit for mW-class rectenna. In IEEE European Microwave Conference, Vol. 2, 2005.Google Scholar
Strassner, B. and Chang, K.: 5.8-GHz circularly polarized dual-rhombic-loop traveling-wave rectifying antenna for low power-density wireless power transmission application. IEEE Trans. Microwave Theory Tech. 51(5), 15481553 (2003).Google Scholar
Chin, C.K., Xue, Q., and Chan, C.H.: Design of a 5.8-GHz rectenna incorporating a new patch antenna. IEEE Antennas Wireless Propag. Lett. 4, 175178 (2005).Google Scholar
Ren, Y.-J. and Chang, K.: 5.8-GHz circularly polarized dual-diode rectenna and rectenna array for microwave power transmission. IEEE Trans. Microwave Theory Tech. 54(4), 14951502 (2006).Google Scholar
Tu, W.-H., Hsu, S.-H., and Chang, K.: Compact 5.8-GHz rectenna using stepped-impedance dipole antenna. IEEE Antennas Wireless Propag. Lett. 6, 282284 (2007).Google Scholar
Xuexia, Y., Junshu, X., Deming, X., and Changlong, X.: X-band circularly polarized rectennas for microwave power transmission applications. J. Electron. (China) 25(3), 389393 (2008).Google Scholar
Monti, G., Tarricone, L., and Spartano, M.: X-band planar rectenna. IEEE Antennas Wireless Propag. Lett. 10, 11161119 (2010).CrossRefGoogle Scholar
Yoo, T.-W. and Chang, K.: 35 GHz integrated circuit rectifying antenna with 33% efficiency. Electron. Lett. 27(23), 2117 (1991).Google Scholar
Hong-Lei, D. and Li, K.: A novel high-efficiency rectenna for 35GHz wireless power transmission. In 4th Int. Conf. Micr. Mill. Wave Tech. Proc., 2004, pp. 114117.Google Scholar
Chiou, H.-K. and Chen, I.-S.: High-efficiency dual-band on-chip rectenna for 35- and 94- GHz wireless power transmission in 0.13-m CMOS technology. IEEE Trans. Microwave Theory Tech. 58(12), 35983606 (2010).Google Scholar
Pinhasi, Y., Yakover, I.M., Eichenbaum, A.L., and Gover, A.: Efficient electrostatic-accelerator free-electron masers for atmospheric power beaming. IEEE Trans. Plasma Sci. 24(3), 10501057 (1996).Google Scholar
Koert, P. and Cha, J.-T.: Millimeter wave technology for space power beaming. IEEE Trans. Microwave Theory Tech. 40(6), 12511258 (1992).Google Scholar
Ren, Y.-J., Li, M.-Y., and Chang, K.: 35 GHz rectifying antenna for wireless power transmission. Electron. Lett. 43(11), (2007).Google Scholar
Koert, P., Cha, J.-T., and Macina, M.: 35 and 94 GHz rectifying antenna systems. In Power from Space Dig., Paris, France, Aug. 1991, pp. 541547.Google Scholar
Brown, W.C.: Optimization of the efficiency and other properties of the rectenna element. In Microwave Symp., IEEE MTT-S Int., 1976, pp. 142144.Google Scholar
Brinster, I., Lohn, J., and Linden, D.: An evolved rectenna for sensor networks. In IEEE APSURSI, 2013, pp. 418419.Google Scholar
Huang, F.-J., Lee, C.-M., Chang, C.-L., Chen, L.-K., Yo, T.-C., and Luo, C.-H.: Rectenna application of miniaturized implantable antenna design for triple-band biotelemetry communication. IEEE Trans. Antennas Propag. 59(7), 26462653 (2011).Google Scholar
Brown, W.C.: Experiments involving a microwave beam to power and position a helicopter. IEEE Trans. Aerospace Electronics Sys. AES-5(5), 692702 (1969).Google Scholar
Corkish, R., Green, M.A., Puzzer, T., and Humphrey, T.: Efficiency of antenna solar collection. In Proc. Photovoltaic Energy Conversion, Vol. 3, 2003, pp. 26822685.Google Scholar
NIST: Optical nanoantennas and nanodiodes using atomic layer deposition. (2002). Found online:www.boulder.nist.gov/div814/nanotech/antennasGoogle Scholar
Balanis, C.: Antenna Theory. Analysis and Design, 2nd ed.; Wiley: New York, 1997.Google Scholar
Nunzi, J.M.: Requirements for a rectifying antenna solar cell technology. Proc. SPIE 7712, 771204 (2010).Google Scholar
Berland, B., Simpson, L., Nuebel, G., Collins, T., and Lanning, B.: Optical rectenna for direct conversion of sunlight to electricity. In National Center for Photovoltaics Program Review Meeting, NREL, 2001; p. 323324.Google Scholar
Mashaal, H. and Gordon, J.M.: Efficiency limits for the rectification of solar radiation. J. Appl. Phys. 113, 193509 (2013).Google Scholar
Joshi, S. and Moddel, G.: Efficiency limits of rectenna solar cells: Theory of broadband photon-assisted tunneling. Appl. Phys. Lett. 102, 083901 (2013).Google Scholar
Kotter, D.K., Novak, S.D., Slafer, W.D., and Pinhero, P.: Solar antenna electromagnetic collectors. In 2nd International Conference on Energy Sustainability, August 2008, pp. 1014.Google Scholar
Briones, E., Alda, J., and Gonzlez, F.J.: Conversion efficiency of broad-band rectennas for solar energy harvesting applications. Opt. Express 21(S3), A412A418 (2013).Google Scholar
Lerner, P.B., Miskovsky, N.M., Cutler, P.H., Mayer, A., and Chung, M.S.: Thermodynamic analysis of high frequency rectifying devices: Determination of the efficiency and other performance parameters. Nano Energy 2, 368376 (2013).Google Scholar
Knight, M.W., Sobhani, H., Nordlander, P., and Halas, N.J.: Photodetection with active optical antennas. Science 332, 702704 (2011).Google Scholar
Ma, Z. and Vandenbosch, G.A.E.: Optimal solar energy harvesting efficiency of nano-rectenna systems. Solar Energy 88, 163174 (2013).Google Scholar
Sarehraz, M., Buckle, K., Weller, T., Stefanakos, E., Bhansali, S., Goswami, Y., and Krishnan, S.: Rectenna developments for solar energy collection. In Photovoltaic Specialists Conference, 2005, pp. 7881.Google Scholar
Vandenbosch, G.A.E. and Ma, Z.: Upper bounds for the solar energy harvesting efficiency of nano-antennas. Nano Energy 1, 494502 (2012).Google Scholar
Stefanakos, E., Goswami, Y., and Bhansali, S.: Rectenna solar energy harvester. US Patent 8 115 683, B1, 2012.Google Scholar
Andersen, J.B. and Frandsen, A.: Absorption efficiency of receiving antennas. IEEE Trans. Antennas Propag. 53(9), 28432849 (2005).Google Scholar
Giovine, E., Casini, R., Dominijanni, D., Notargiacomo, A., Ortolani, M., and Foglietti, V.: Fabrication of Schottky diodes for terahertz imaging. Microelectron. Eng. 88, 25442546 (2011).Google Scholar
Landsberg, P.T. and Tonge, G.: Thermodynamics of the conversion of diluted radiation. J. Phys. A: Math. Gen. 12(4), 551561 (1979).Google Scholar
Sanchez, A., Davis, C.F. Jr., Liu, K.C., and Javan, A.: The MOM tunneling diode: Theoretical estimate of its performance at microwave and infra frequencies. J. Appl. Phys. 49, 52705277 (1978).Google Scholar
Brillouin, L.: Can the rectifier become a thermo-dynamical demon? Phys. Rev. 78, 627 (1950).Google Scholar
Fumeaux, C., Herrmann, W., Kneubühl, F.K., and Rothuizen, H.: Nanometer thin-film Ni–NiO–Ni diodes for detection and mixing of 30THz radiation. Infrared Phys. Technol. 39, 123183 (1998).Google Scholar
Fumeaux, C., Alda, J., and Boreman, G.D.: Lithographic antennas at visible frequencies. Opt. Lett. 24, 1629 (1999).Google Scholar
González, F.J. and Boreman, G.D.: Comparison of dipole, bowtie, spiral and log-periodic IR antennas. Infrared Phys. Technol. 46, 418428 (2005).Google Scholar
Krishnan, S., La Rosa, H., Stefanakos, E., Bhansali, S., and Buckle, K.: Design and development of batch fabricatable metal-insulator-metal diode and microstrip slot antenna as rectenna elements. Sens. Actuators, A 142, 4047 (2008).Google Scholar
Ren, Y.-J. and Chang, K.: New 5.8-GHz circularly polarized retrodirective rectenna arrays for wireless power transmission. IEEE Trans. Microwave Theory Tech. 54, 29702976 (2006).Google Scholar
Feynman, R.P.: There’s plenty of room at the bottom. Eng. Sci. 23, 2236 (1960).Google Scholar
Muhlschlegel, P.: Resonant optical antennas. Science 308, 16071609 (2005).Google Scholar
Hecht, B., Muhlschlegel, P., Farahani, J.N., Eisler, H.-J., and Pohl, D.W.: Chapter 9 –Resonant optical antennas and single emitters. In Tip Enhancement, Elsevier: Amsterdam, 2007, pp. 275307.Google Scholar
Biagioni, P., Huang, J.-S., and Hecht, B.: Nanoantennas for visible and infrared radiation. Rep. Prog. Phys. 75, 024402 (2012).Google Scholar
Jackson, J.D.: Classical Electrodynamics, 3rd ed.; John Wiley & Sons: New York, 1998.Google Scholar
Maier, S.A.: Plasmonics: Fundamentals and Applications, Springer: New York, 2007.Google Scholar
Kreibig, U. and Vollmer, M.: Optical Properties of Metal Clusters, Springer: New York, 1995.Google Scholar
Rakic, A.D., Djurišic, A.B., Elazar, J.M., and Majewski, M.L.: Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl. Opt. 37, 5271 (1998).CrossRefGoogle ScholarPubMed
Bohren, C.F. and Huffman, D.R.: Absorption and Scattering of Light by Small Particles, Wiley: New York, 2008.Google Scholar
Draine, B.T. and Flatau, P.J.: Discrete-dipole approximation for scattering calculations. J. Opt. Soc. Am. 11, 1491 (1994).Google Scholar
Khoury, C.G., Norton, S.J., and Vo-Dinh, T.: Plasmonics of 3-D nanoshell dimmers using multipole expansion and finite element method. ACS Nano 3(9), 27762788 (2009).Google Scholar
Oskooi, A.F., Roundy, D., Ibanescu, M., Bermel, P., Joannopoulos, J.D., and Johnson, S.G.: Meep: A flexible free-software package for electromagnetic simulations by the FDTD method. Comput. Phys. Commun. 181, 687702 (2010).Google Scholar
Centeno, A., Alford, N., and Xie, F.: Predicting the fluorescent enhancement rate by gold and silver nanospheres using finite-difference time-domain analysis. IET Nanobiotechnol. 7, 5058 (2010).Google Scholar
Centeno, A., Ahmed, B., Reehal, H., and Xie, F.: Diffuse scattering from hemispherical nanoparticles at the air-silicon interface. Nanotechnology 24, 415402 (2013).Google Scholar
Centeno, A., Xie, F., Breeze, J., and Alford, N.: Calculations of scattering and absorption efficiencies of noble metal nanoparticles. In Applied Electromagnetics Conference (AEMC), IEEE, 2011, pp. 14.Google Scholar
Fang, Z., Liu, Z., Wang, Y., Ajayan, P.M., Nordlander, P., and Halas, N.J.: Graphene-antenna sandwich photodetector. Nano Lett. 12, 38083813 (2012).Google Scholar
Goykhman, I., Desiatov, B., Khurgin, J., Shappir, J., and Levy, U.: Locally oxidized silicon surface-plasmon Schottky detector for telecom regime. Nano Lett. 11, 22192224 (2011).Google Scholar
Mukherjee, S., Libisch, F., Large, N., Neumann, O., Brown, L.V., Cheng, J., Lassiter, J.B., Carter, E.A., Nordlander, P., and Halas, N.J.: Hot electrons do the impossible: Plasmon-induced dissociation of H2 on Au. Nano Lett. 13, 240247 (2013).Google Scholar
Wang, F. and Melosh, N.A.: Plasmonic energy collection through hot carrier extraction. Nano Lett. 11, 54265430 (2011).Google Scholar
Xie, F., Pang, J.S., Centeno, A., Ryan, M.P., Riley, D.J., and Alford, N.M.: Nanoscale control of Ag nanostructures for plasmonic fluorescence enhancement of near-infrared dyes. Nano Res. 6, 496510 (2013).Google Scholar
Bonakdar, A., Kohoutek, J., Dey, D., and Mohseni, H.: Optomechanical nanoantenna. Opt. Lett. 37, 3258 (2012).Google Scholar
Grover, S., Dmitriyeva, O., Estes, M.J., and Moddel, G.: Travelling-wave metal/insulator/metal diodes for improved infrared bandwidth and efficiency of antenna-coupled rectifiers. IEEE Trans. Nanotech. 9(6), 716722 (2010).Google Scholar
Hobbs, P.C.D., Laibowitz, R.B., and Libsch, F.R.: Ni–NiO–Ni tunnel junction for terahertz and infrared detection. Appl. Opt. 44(32), 68136822 (2005).Google Scholar
Kinzel, E.C., Brown, R.L., Ginn, J.C., Lail, B.A., Slovick, B.A., and Boreman, G.D.: Design of an MOM diode-coupled frequency-selective surface. Microwave Opt. Technol. Lett. 55, 489493 (2013).CrossRefGoogle Scholar
Reed, J.C., Zhu, H., Zhu, A.Y., Li, C., and Cubukcu, E.: Graphene-enabled silver nanoantenna sensors. Nano Lett. 12, 40904094 (2012).Google Scholar
Fang, Z., Thongrattanasiri, S., Schlather, A., Liu, Z., Ma, L., Wang, Y., Ajayan, P.M., Nordlander, P., Halas, N.J., and de Abajo, F.J.G.: Gated tunability and hybridization of localized plasmons in nanostructured graphene. ACS Nano 7, 23882395 (2013).Google Scholar
Greffet, J.-J., Laroche, M., and Marquier, F.: Impedance of a nanoantenna and a single quantum emitter. Phys. Rev. Lett. 105, 117701 (2010).Google Scholar
Liu, N., Wen, F., Zhao, Y., Wang, Y., Nordlander, P., Halas, N.J., and Alù, A.: Individual nanoantennas loaded with three-dimensional optical nanocircuits. Nano Lett. 13, 142147 (2013).Google Scholar
Guo, L.J.: Nanoimprint lithography methods, and material requirements. Adv. Mater. 19, 495513 (2007).Google Scholar
Bergmair, I., Dastmalchi, B., Bergmair, M., Saeed, A., Hilber, W., Hesser, G., Helgert, C., Pshenay-Severin, E., Pertsch, T., Kley, E.B., Hübner, U., Shen, N.H., Penciu, R., Kafesaki, M., Soukoulis, C.M., Hingerl, K., Muehlberger, M., and Schoeftner, R.: Single and multilayer metamaterials fabricated by nanoimprint lithography. Nanotechnology 22, 325301 (2011).CrossRefGoogle ScholarPubMed
Xie, F., Centeno, A., Ryan, M.R., Riley, D.J., and Alford, N.M.: Au nanostructures by colloidal lithography: From quenching to extensive fluorescence enhancement. J. Mater. Chem. B 1, 536 (2012).Google Scholar
Haynes, C.L. and Duyne, R.P.V.: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics. J. Phys. Chem. B 105, 55995611 (2001).Google Scholar
Liu, X., Choi, B., Gozubenli, N., and Jiang, P.: Periodic arrays of metal nanorings and nanocrescents fabricated by a scalable colloidal templating approach. J. Colloid Interface Sci. 409, 5258 (2013).Google Scholar
Hsu, C.-M., Connor, S.T., Tang, M.X., and Cui, Y.: Wafer-scale silicon nanopillars and nanocones by Langmuir-Blodgett assembly and etching. Appl. Phys. Lett. 93, 133109 (2008).Google Scholar
Zhang, X.A., Elek, J., and Chang, C.-H.: Three-dimensional nanolithography using light scattering from colloidal particles. ACS Nano 7, 62126218 (2013).Google Scholar
Bharadwaj, P., Deutsch, B., and Novotny, L.: Optical antennas. Adv. Opt. Photonics 1, 438 (2009).Google Scholar
Jennings, D.A., Petersen, F.R., and Evenson, K.M.: Extension of absolute frequency measurements to 148 THz: Frequencies of 2.0- and 3.5 μm Xe laser. Appl. Phys. Lett. 26, 510511 (1975).Google Scholar
Periasamy, P., Berry, J.J., Dameron, A.A., Bergeson, J.D., Ginley, D.S., O’Hayre, R.P., and Parilla, P.A.: Fabrication and characterisation of MIM diodes based on Nb/Nb2O5 via a rapid screening technique. Adv. Mater. 23, 30803085 (2011).Google Scholar
Periasamy, P., Guthrey, H.L., Abdulagatov, A.L., Ndione, P.F., Berry, J.J., Ginley, D.S., George, S.M., Parilla, P.A., and O’Hayre, R.P.: Metal-insulator-metal diodes: Role of the insulator layer on the rectification performance. Adv. Mater. 25, 13011308 (2013).Google Scholar
Chin, M.L., Periasamy, P., O’Regan, T.P., Amani, M., Tan, C., O’Hayre, R.P., Berry, J.J., Osgood, R.M., Parilla, P.A., Ginley, D.S., and Dubey, M.: Planar metal-insulator-metal diodes based on the Nb/Nb2O5/X material system. J. Vac. Sci. Technol., B 31(5), 051204 (2013).Google Scholar
Tucker, J.R. and Feldman, M.J.: Quantum detection at mm wavelengths. Rev. Mod. Phys. 57(4), 10551114 (1985).Google Scholar
Tung, R.T.: Recent advances in Schottky barrier concepts. Mater. Sci. Eng., R 35, 1138 (2001).Google Scholar
Pierret, R.F.: Semiconductor Device Fundamentals; Addison-Wesley Publishing Company, Inc., 1996.Google Scholar
Sze, S.M.: Physics of Semiconductor Devices, 3rd ed.; John Wiley & Sons Inc.: New York, 2007.Google Scholar
Schroder, D.K.: Semiconductor Material, and Device Characterization, 3rd ed.; John Wiley & Sons, Inc.: New York, 2006.Google Scholar
Tung, R.T.: Electron transport at metal-semiconductor interfaces: General theory. Phys. Rev. B 45, 1350913523 (1992).Google Scholar
Gammon, P.M., Donchev, E., Pérez-Tomás, A., Shah, V.A., Pang, J.S., Petrov, P.K., Jennings, M.R., Fisher, C.A., Mawby, P.A., Leadley, D.R., and Alford, N.McN.: A study of temperature-related non-linearity at the metal-silicon interface. J. Appl. Phys. 112, 114513 (2012).Google Scholar
Roccaforte, F., La Via, F., Raineri, V., Pierobon, R., and Zanoni, E.: Extracting the Richardson constant: IrOx/n-ZnO Schottky diodes. J. Appl. Phys. 93, 9137 (2003).Google Scholar
Gammon, P.M., Pérez-Tomás, A., Shah, V.A., Roberts, G.J., Jennings, M.R., Covington, J.A., and Mawby, P.A.: Analysis of inhomogeneous Ge/SiC heterojunction diodes. J. Appl. Phys. 106, 093708 (2009).Google Scholar
Gammon, P.M., Pérez-Tomás, A., Jennings, M.R., Shah, V.A., Boden, S.A., Davis, M.C., Burrows, S.E., Wilson, N.R., Roberts, G.J., Covington, J.A., and Mowby, P.A.: Interface characteristics of nn and pn Ge/SiC heterojunction diodes formed by molecular beam epitaxy deposition. J. Appl. Phys. 107, 124512 (2010).Google Scholar
Gammon, P.M., Pérez-Tomás, A., Shah, V.A., Vavasour, O., Donchev, E., Pang, J.S., Myronov, M., Fisher, C.A., Jennings, M.R., Leadley, D.R., and Mawby, P.A.: Modelling the inhomogeneous SiC Schottky interface. J. Appl. Phys. 114, 223704 (2013).Google Scholar
Strohm, K.M., Buechler, J., and Kasper, E.: SIMMWIC rectennas on high-resistivity silicon and CMOS compatibility. IEEE Trans. Microwave Theory Tech. 46(5), 669676 (1998).Google Scholar
Sankaran, S. and O, K.K.: Schottky diode with cutoff frequency of 400 GHz fabricated in 0.18μm CMOS. Electron. Lett. 41(8), 506508 (2005).Google Scholar
Sizov, F. and Rogalski, A.: THz detectors. Prog. Quantum Electron. 34, 278347 (2010).Google Scholar
Giugni, A., Torre, B., Toma, A., Francardi, M., Malerba, M., Alabastri, A., Proietti Zaccaria, R., Stockman, M.I., and Di Fabrizio, E.: Hot-electron nanoscopy using adiabatic compression of surface plasmons. Nat. Nanotechnol. 8, 845852 (2013).Google Scholar
Eliasson, B.: Metal-insulator-metal Diodes for Solar Energy Conversion, PhD Thesis at University of Colorado, Boulder, 2001.Google Scholar
Sullivan, T.E., Kuk, Y., and Cutler, P.H.: Proposed planar scanning tunneling microscope diode: Application as an infrared and optical detector. IEEE Trans. Electron Devices 36(11), 26592664 (1989).Google Scholar
Grover, S., Joshi, S., and Moddel, G.: Quantum theory of operation for rectenna solar cells. J. Phys. D: Appl. Phys. 46, 135106 (2013).Google Scholar
Alimardani, N., McGlone, J.M., Wager, J.F., and Conley, J.F. Jr: Conduction processes in metal-insulator-metal diodes with Ta2O5 and Nb2O5 insulators deposited by atomic layer deposition. J. Vac. Sci. Technol., A 32(1), 01A122 (2014).Google Scholar
Fowler, R.H. and Nordheim, L.: Electron emission in intense electric fields. Proc. R. Soc. Lond. A 119, 173181 (1928).Google Scholar
Grover, S. and Moddel, G.: Applicability of metal/insulator/metal (MIM) diodes to solar rectennas. IEEE J. Photovolt. 1(1), 7883 (2011).Google Scholar
Kadlec, J. and Gundlach, K.H.: Dependence of the barrier height on insulator thickness in Al-(Al-Oxide)-Al sandwiches. Solid State Commun. 16, 621623 (1975).Google Scholar
Heiblum, M., Wang, S., Whinnery, J.R., and Gustafson, T.K.: Characteristics of integrated MOM junctions at dc and at optical frequencies. IEEE J. Quantum Electron. QE-14(3), 159169 (1978).Google Scholar
Wilke, I., Oppliger, Y., Herrmann, W., and Kneubühl, F.K.: Nanometer thin-film Ni-NiO–Ni diodes for 30 THz radiation. Appl. Phys. A 58, 329341 (1994).Google Scholar
Abdel-Rahman, M.R., González, F.J., and Boreman, G.D.: Antenna-coupled metal-oxide-metal diodes for dual-band detection at 92.5 GHz and 28 THz. Electron. Lett. 40(2), (2004).Google Scholar
Choi, K., Yesilkoy, F., Ryu, G., Cho, S.H., Goldsman, N., Dagenais, M., and Peckerar, M.: A focused asymmetric metal-insulator-metal tunneling diode: Fabrication, DC characteristics and RF rectification analysis. IEEE Trans. Electron Devices 58(10), 35193528 (2010).Google Scholar
Gloos, K., Koppinen, P.J., and Pekola, J.P.: Properties of native ultrathin aluminium oxide tunnel barriers. J. Phys.: Condens. Matter 15, 17331746 (2003).Google Scholar
Periasamy, P., Bergeson, J.D., Parilla, P.A., Ginley, D.S., and O’Hayre, R.P.: Metal-insulator-metal point-contact diodes as a rectifier for rectenna. PVSC 25, 29432945 (2010).Google Scholar
Hoofring, A.B., Kapoor, V.J., and Krawczonek, W.: Submicron nickel-oxide-gold tunnel diode detectors for rectennas. J. Appl. Phys. 66(1), 430437 (1989).Google Scholar
Krishnan, S., Stefanakos, E., and Bhansali, S.: Effects of dielectric thickness and contact area on current-voltage characteristics of thin film metal-insulator-metal diodes. Thin Solid Films 516, 22442250 (2008).Google Scholar
Esfandiari, P., Bernstein, G., Fay, P., Porod, W., Rakos, B., Zarandy, A., Berland, B., Boloni, L., Boreman, G., Lail, B., Monacelli, B., and Weeks, A.: Tunable antenna-coupled metaloxidemetal (MOM) uncooled IR detector (invited paper). Proc. SPIE 5783, 470482 (2005).Google Scholar
Gustafson, T.K., Schmidt, R.V., and Perucca, J.R.: Optical detection in thin-film metal-oxide-metal diodes. Appl. Phys. Lett. 24(12), 620622 (1974).Google Scholar
Periasamy, P., O’Hayre, R.P., Berry, J.J., Parilla, P.A., Ginley, D.S., and Packard, C.E.: A novel way to characterize metal-insulator-metal devices via nanoindentation. PVSC 37 (2011). Retrieved from: http://www.nrel.gov/docs/fy11osti/50727.pdf.Google Scholar
Cowell, E.W. III, Alimardani, N., Knutson, C.C., Conley, J.F. Jr., Keszler, D.A., Gibbons, B.J., and Wager, J.F.: Advancing MIM electronics: Amorphous metal electrodes.Adv. Mater. 23, 7478 (2011).Google Scholar
Grossman, E.N., Harvey, T.E., and Reintsema, C.D.: Controlled barrier modification in Nb/NbOx/Ag metal insulator metal tunnel diodes. J. Appl. Phys. 91(12), 1013410139 (2002).Google Scholar
Alimardani, N., Cowell, E.W. III, Conley, J.F. Jr., Evans, D.R., Chin, M., Kilpatrick, S.J., and Dubey, M.: Impact of electrode roughness on metal-insulator-metal tunnel diodes with atomic layer deposited Al2O3 tunnel barriers. J. Vac. Sci. Technol., A 30(1), 01A113 (2012).Google Scholar
Tiwari, B., Bean, J.A., Szakmány, G., Bernstein, G.H., Fay, P., and Porod, W.: Controlled etching and regrowth of tunnel oxide for antenna-coupled metal-oxide-metal diodes. J. Vac. Sci. Technol., B 27(5), 21532160 (2009).Google Scholar
Periasamy, P., Bradley, M.S., Parilla, P.A., Berry, J.J., Ginley, D.S., O’Hayre, R.P., and Packard, C.E.: Electromechanical tuning of nanoscale MIM diodes by nanoindentation. J. Mater. Res. 28(14), 19121919 (2013).Google Scholar
Simmons, J.G.: Electric tunnel effect between dissimilar electrodes separated by a thin insulating film. J. Appl. Phys. 34, 25812590 (1963).Google Scholar
Hashem, I.E., Rafat, N.H., and Soliman, E.A.: Theoretical study of metal-insulator-metal tunneling diode figures of merit. IEEE J. Quantum Electron. 49(1), 7279 (2013).Google Scholar
Choi, K., Yesilkoy, F., Chryssis, A., Dagenais, M., and Peckerar, M.: New process development for planar-type CIC tunneling diodes. IEEE Electron Device Lett. 31(8), 809811 (2010).Google Scholar
Cowell, E.W. III, Muir, S.W., Keszler, D.A., and Wager, J.F.: Barrier height estimation of asymmetric metal-insulator-metal tunneling diodes. J. Appl. Phys. 114, 213703 (2013).Google Scholar
McMitchell, S.R.C., Tse, Y.Y., Bouyanfif, H., Jackson, T.J., Jones, I.P., and Lancaster, M.J.: Two-dimensional growth of SrTiO3 thin films on (001) MgO substrates using pulsed laser deposition and reflection high energy electron diffraction. Appl. Phys. Lett. 95, 174102 (2009).Google Scholar
Palgrave, R.G., Borisov, P., Dyer, M.S., McMitchell, S.R.C., Darling, G.R., Claridge, J.B., Batuk, M., Tan, H., Tian, H., Verbeeck, J., Handermann, J., and Rosseinsky, M.J.: Artificial construction of the layered Ruddlesden-Popper manganite La2 Sr2 Mn3 O10 by reflection high energy electron diffraction monitored pulsed laser deposition. J. Am. Chem. Soc. 134, 77007714 (2012).Google Scholar
Gupta, R. and Willis, B.G.: Nanometer spaced electrodes using selective area atomic layer deposition. Appl. Phys. Lett. 90, 253102 (2007).Google Scholar
Bareib, M., Ante, F., Kälblein, D., Jegert, G., Jirauschek, C., Scarpa, G., Fabel, B., Nelson, E.M., Timp, G., Zschieschang, U., Klauk, H., Porod, W., and Lugli, P.: High-yield printing of metal-insulator-metal nanodiodes. ACS Nano 6(2), 28532859 (2012).Google Scholar
Moddel, G. and Eliasson, B.J.: High speed electron tunneling device and applications. US Patent No. 6756649B2, 2004.Google Scholar
Grover, S. and Moddel, G.: Engineering the current-voltage characteristics of metal-insulator-metal diodes using double-insulator barriers. Solid-State Electron. 67, 9499 (2012).Google Scholar
Di Ventra, M., Papp, G., Coluzza, C., Baldereschi, A., and Schulz, P.A.: Indented barrier resonant tunneling rectifiers. J. Appl. Phys. 80, 41744176 (1996).Google Scholar
Eliasson, B.J. and Moddel, G.: Metal-oxide electron tunneling device for solar energy conversion. US Patent 6534784B2, 2003.Google Scholar
Hegyi, B., Csurgay, A., and Porod, W.: Investigation of the nonlinearity properties of the DC I-V characteristics of metal-insulator-metal (MIM) tunnel diodes with double-layer insulators. J. Comput. Electron. 6, 159162 (2007).Google Scholar
Maraghechi, P., Foroughi-Abari, A., Cadien, K., and Elezzabi, A.Y.: Enhanced rectifying response from metal-insulator-insulator-metal junctions. Appl. Phys. Lett. 99, 253503 (2011).Google Scholar
Alimardani, N., Cowell, E.W., Wager, J.F., and Conley, J.F. Jr.: Fabrication and investigation of metal-insulator-insulator-metal (MIIM) tunnel diodes using atomic layer deposition. In 221st ECS Meeting, 2012.Google Scholar
Alimardani, N.: Investigation of metal-insulator-metal (MIM) and nanolaminate barrier MIIM tunnel devices fabricated via atomic layer deposition, Ph.D. Thesis, Oregon State University, 2013.Google Scholar
Alimardani, N. and Conley, J.F. Jr.: Step tunneling enhanced asymmetry in asymmetric electrode metal-insulator-insulator-metal tunnel diodes. Appl. Phys. Lett. 102, 143501 (2013).Google Scholar
Sekar, D.C., Kumar, T., Rabkin, P., and Costa, X.C.: MIIIM diode having Lanthanum oxide. US Patent 2013/0181181, 2013.Google Scholar
Moddel, G.: Geometric diode, applications, and method. US Patent 20110017284A1, 2011.Google Scholar
Zhu, Z., Joshi, S., Grover, S., and Moddel, G.: Graphene geometric diodes for terahertz rectennas. J. Phys. D: Appl. Phys. 46, 185101 (2013).Google Scholar
Zhu, Z., Grover, S., Krueger, K., and Moddel, G.: Optical rectenna solar cells using grapheme geometric diodes. PVSC 37, 21202122 (2011).Google Scholar
Joshi, S., Zhu, Z., Grover, S., and Moddel, G.: Infrared optical response of geometric diode rectenna solar cells. PVSC 38, 29762978 (2012).Google Scholar
Moddel, G., Zhu, Z., Grover, S., and Joshi, S.: Ultrahigh speed graphene diode with reversible polarity. Solid State Commun. 152, 18421845 (2012).Google Scholar
Grover, S.: Diodes for optical rectennas, PhD Thesis at University of Colorado, Boulder, 2011.Google Scholar
Ashcroft, N.M. and Mermin, N.D.: Solid State Physics; Harcourt College Publishers: Orlando, 1976.Google Scholar
Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S., and Geim, A.K.: The electronic properties of graphene. Rev. Mod. Phys. 81, 109162 (2009).Google Scholar
Fukuda, M., Aihara, T., Yamaguchi, K., Ling, Y.Y., Miyaji, K., and Tohyama, M.: Light detection enhanced by surface plasmon resonance in metal film. Appl. Phys. Lett. 96, 153107 (2010).Google Scholar
Ishi, T., Fujikata, J., Makita, K., Baba, T., and , K.Ohashi, : Si nano-photodiode with a surface plasmon antenna. Jpn. J. Appl. Phys. 44(2), L364L366 (2005).Google Scholar
Satoh, H. and Inokawa, H.: Surface plasmon antenna with gold line and space grating for enhanced visible light detection by a silicon-on-insulator metal-oxide-semiconductor photodiode. IEEE Trans. Nanotechnol. 11(2), 346351 (2012).Google Scholar
Bareib, M., Tiwari, B.N., Hochmeister, A., Jegert, G., Zschieschang, U., Klauk, H., Fabel, B., Scarpa, G., Koblmüller, G., Bernstein, G.H., Porod, W., and Lugli, P.: Nano antenna array for terahertz detection. IEEE Trans. Microwave Theory Trans. 59(10), 27512757 (2011).Google Scholar
Codreanu, I., González, F.J., and Boreman, G.D.: Detection mechanisms in microstrip dipole antenna-coupled infrared detectors. Infrared Phys. Technol. 44, 155163 (2003).Google Scholar
Enderra, I., Gonzalo, R., Martinez, B., Alderman, B.E.J., Huggard, P.G., Murk, A., Marchand, L., and de Maagt, P.: Design and test of a 0.5 THz dipole antenna with integrated Schottky diode detector on a high dielectric constant ceramic electromagnetic bandgap substrate. IEEE Trans. Terahertz Sci. Technol. 3(3), 584593 (2013).Google Scholar
Clavero, C.: Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat. Photonics 8, 95103 (2014).CrossRefGoogle Scholar
The World Bank (2013). Energy - The Facts. Retrieved from: http://go.worldbank.org/6ITD8WA1A0.Google Scholar
Fraunhofer ISE (Press Release 23 Sep. 2013): World Record Solar Cell with 44.7% Efficiency. Retrieved from: http://www.ise.fraunhofer.de/en/press-and-media/press-releases/presseinformationen-2013/world-record-solar-cell-with-44.7-efficiency.Google Scholar