Skip to main content

Transforming the global energy system is required to avoid the sixth mass extinction

  • Anthony D. Barnosky (a1)

This study argues that the climate changes resulting from the continued burning of fossil fuels at present rates will very likely initiate extinction of many terrestrial and marine species, beginning by mid-century. Under this scenario, interactions of climate change with other well-known extinction threats promise to trigger a loss of life that has not been seen since an asteroid-strike eliminated most dinosaurs 66 million years ago. Avoiding this will require a very rapid shift of both our stationary and transportation energy sectors to carbon-neutral systems.

Mass extinctions, which result in loss of at least an estimated 75% of known species over a geologically short time period, are very rare in the 540 million year history of complex life on Earth. Only five have been recognized, the most recent of which occurred 66 million years ago, ending the reign of dinosaurs and opening the door for domination of the planet eventually by humans, who have now accelerated biodiversity loss to the extent that a Sixth Mass Extinction is plausible. Accelerated extinction rates up to now primarily have been due to human-caused habitat destruction and overexploitation of economically valuable species. Climate change caused by burning of fossil fuels adds a new and critically problematic extinction driver because the pace and magnitude of change exceeds what many species have experienced in their evolutionary history, and rapid climate change multiplies the already-existing threats. Particularly at risk are regions that contain most of the world's species, such as rainforest and coral reef ecosystems. Avoiding severe losses that would commit many species to extinction by 2100 will require transforming global energy systems to carbon-neutral ones by 2050. Currently, the transformation is occurring too slowly to avoid worst-case extinction scenarios.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Transforming the global energy system is required to avoid the sixth mass extinction
      Available formats
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Transforming the global energy system is required to avoid the sixth mass extinction
      Available formats
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Transforming the global energy system is required to avoid the sixth mass extinction
      Available formats
Corresponding author
a) Address all correspondence to Anthony D. Barnosky at
Hide All
1. Barnosky, A.D.: Megafauna biomass tradeoff as a driver of quaternary and future extinctions. Proc. Natl. Acad. Sci. U. S. A. 105, 1154311548 (2008).
2. Del Grosso, S., Parton, W., Stohlgren, T., Zheng, D., Bachelet, D., Prince, S., Hibbard, K., and Olsen, R.: Global potential net primary production predicted from vegetation class, precipitation, and temperature. Ecology 89, 21172126 (2008).
3. Haberl, H., Erb, K-H., Krausmann, F., Gaube, V., Bondeau, A., Plutzar, C., Gingrich, S., Lucht, W., and Fischer-Kowalski, M.: Quantifying and mapping the human appropriation of net primary production in Earth’s terrestrial ecosystems. Proc. Natl. Acad. Sci. U. S. A. 104, 1294212947 (2007).
4. Smith, W.K., Zhao, M., and Running, S.W.: Global bioenergy capacity as constrained by observed biospheric productivity rates. Bioscience 62, 911922 (2012).
5. Vitousek, P.M., Ehrlich, P.R., Ehrlich, A.H., and Matson, P.A.: Human appropriation of the products of photosynthesis. BioScience 36, 368373 (1986).
6. Barnosky, A.D.: Dodging Extinction: Power, Food, Money, and the Future of Life on Earth (University of California Press, Berkeley, California, 2014).
7. Haberl, H., Erb, K-H., Krausmann, F., Running, S., Searchinger, T.D., and Smith, W.K.: Bioenergy: How much can we expect for 2050? Environ. Res. Lett. 8, 15 (2013). doi: 10.1088/1748-9326/8/3/031004.
8. Smil, V.: Harvesting the biosphere: The human impact. Popul. Dev. Rev. 37, 613636 (2011).
9. IPCC: Summary for policymakers. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Stocker, T.F., Qin, D., Plattner, G-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, Y., and Midgley, P.M. eds.; Cambridge University Press: Cambridge, United Kingdom and New York, NY, USA, 2013.
10. IPCC-SREX: Special report of the intergovernmental panel on climate change. In Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation, Field, C.B., Barros, V., Stocker, T.F., Dahe, Q., Dokken, D.J., Ebi, K.L., Mastrandrea, M.D., Mach, K.J., Plattner, G.-K., Allen, S.K., Tignor, M., and Midgley, P.M. eds.; Cambridge University Press: New York, 2012; pp. 1594.
11. IPCC: Summary for policymakers. In Climate Change 2014, Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Farahani, E., Kadner, S., Seyboth, K., Adler, A., Baum, I., Brunner, S., Eickemeier, P., Kriemann, B., Savolainen, J., Schlömer, S., von Stechow, C., Zwickel, T., and Minx, J.C. eds.; Cambridge University Press: Cambridge, United Kingdom and New York, NY, USA, 2014.
12. Cahill, A.E., Aiello-Lammens, M.E., Fisher-Reid, M.C., Hua, X., Karanewsky, C.J., Ryu, H.Y., Sbeglia, G.C., Spagnolo, F., Waldron, J.B., Warsi, O., and Wiens, J.J.: How does climate change cause extinction? Proc. R. Soc. B 280, 19 (2012). doi: 10.1098/rspb.2012.1890.
13. Pimm, S.L.: Climate disruption and biodiversity. Curr. Biol. 19, R595R601 (2009).
14. Pimm, S.L., Abell, C.N.J., Brooks, T.M., Gittleman, J.L., Joppa, L.N., Raven, P.H.C., Roberts, M., and Sexton, J.O.: The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 1246752 (2014). doi: 10.1126/science.1246752.
15. Harnik, P.G., Lotze, H.K., Anderson, S.C., Finkel, Z.V., Finnegan, S., and Lindberg, D.R.: Extinctions in ancient and modern seas. Trends Ecol. Evol. 27, 608617 (2012).
16. Root, T.L., Price, J.T., Hall, K.R., Schneider, S.H., Rosenzweig, C., and Pounds, J.A.: Fingerprints of global warming on wild animals and plants. Nature 421, 5760 (2003).
17. Solomon, S., Battisti, D., Doney, S., Hayhoe, K., Held, I.M., Lettenmaier, D.P., Lobell, D., Mathhews, H.D., Peirrehumbert, R., Raphael, M., Richels, R., Root, T.L., Steffen, K., Tebaldi, C., Yohe, G.W., Wardent, T., Brown, L., Dunlea, E., Reidmiller, D., Freeland, S., Payne, R., and Bearrs, D.: Climate Stablilization Targets: Emissions, Concentrations, and Impacts of Decades to Millennia (National Academies Press, Washington, D.C., 2011).
18. Parmesan, C.: Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637639 (2006).
19. Parmesan, C. and Yohe, G.: A globally coherent fingerprint of climate change across natural systems. Nature 421, 3742 (2003).
20. Diffenbaugh, N.S. and Field, C.B.: Changes in ecologically critical terrestrial climate conditions. Science 341, 486492 (2013).
21. White, J.W.C., Alley, R.B., Archer, D.E., Barnosky, A.D., Foley, J., Fu, R., Holland, M.K., Lozier, M.S., Schmitt, J., Smith, L.C., Sugihara, G., Thompson, D.W.J., Weaver, A.J., Wofsy, S.C., Dunlea, E., Mengelt, C., Purcell, A., Gaskins, R., and Greenway, R.: Abrupt Impacts of Climate Change, Anticipating Surprises (National Academies Press, Washington, D.C., 2013).
22. Loarie, S.R., Duffy, P.B., Hamilton, H., Asner, G.P., Field, C.B., and Ackerly, D.D.: The velocity of climate change. Nature 462, 10521055 (2009).
23. Barnosky, A.D.: Heatstroke, Nature in an Age of Global Warming (Island Press, Washington, D.C., 2009).
24. Dirzo, R., Young, H.S., Galetti, M., Ceballos, G., Isaac, N.J.B., and Collen, B.: Defaunation in the Anthropocene. Science 345, 401406 (2014).
25. Seddon, P.J., Griffiths, C.J., Soorae, P.S., and Armstrong, D.P.: Reversing defaunation: Restoring species in a changing world. Science 345, 406412 (2014).
26. Urban, M.C.: Accelerating extinction risk from climate change. Science 348, 571573 (2015).
27. Moritz, C., Patton, J.L., Conroy, C.J., Parra, J.L., White, G.C., and Beissinger, S.R.: Impact of a century of climate change on small-mammal communities in Yosemite National Park, USA. Science 322, 261264 (2008).
28. Heerwaarden, B.v. and Sgrò, C.M.: Is adaptation to climate change really constrained in niche specialists? Proc. R. Soc. B 281, 14712954 (2014).
29. Moritz, C. and Agudo, R.: The future of species under climate change: resilience or decline? Science 341, 504508 (2013).
30. Blois, J.L. and Hadly, E.A.: Mammalian response to Cenozoic climatic change. Annu. Rev. Earth Planet. Sci. 37, 8.18.28 (2009).
31. Brook, B.W. and Barnosky, A.D.: Quaternary extinctions and their link to climate change. In Saving a Million Species, Hannah, L. ed.; Island Press: Washington, D.C., 2012; pp. 179198.
32. Barnosky, A.D., Matzke, N., Tomiya, S., Wogan, G.O.U., Swartz, B., Quental, T., Marshall, C., McGuire, J.L., Lindsey, E.L., Maguire, K.C., Mersey, B., and Ferrer, E.A.: Has the Earth's sixth mass extinction already arrived? Nature 471, 5157 (2011).
33. Pimm, S.L., Raven, P., Peterson, A., Sekercioglu, Ç.H., and Ehrlich, P.R.: Human impacts on the rates of recent, present, and future bird extinctions. Proc. Natl. Acad. Sci. U. S. A. 103, 1094110946 (2006).
34. Pimm, S.L., Russell, G.J., Gittleman, J.L., and Brooks, T.M.: The future of biodiversity. Science 269, 347350 (1995).
35. Ceballos, G., Ehrlich, P.R., Barnosky, A.D., García, A., Pringle, R.M., and Palmer, T.M.: Accelerated modern human induced species losses: Entering the sixth mass extinction. Sci. Adv. 1, e1400253 (2015). doi: 10.1126/sciadv.1400253.
36. Foden, W.B., Butchart, S.H.M., Stuart, S.N., Vié, J-C., Akçakaya, H.R., Angulo, A., DeVantier, L.M., Gutsche, A., Turak, E., Cao, L., Donner, S.D., Katariya, V., Bernard, R., Holland, R.A., Hughes, A.F., O’Hanlon, S.E., Garnett, S.T., Sekercioglu, Ç.H., and Mace, G.M.: Identifying the World’s most climate change vulnerable species: A Systematic trait-based assessment of all birds, amphibians and corals. PLoS One 8, e65427 (2013). doi: 10.1371/journal.pone.0065427.
37. Jablonski, D.: Lessons from the past: Evolutionary impacts of mass extinctions. Proc. Natl. Acad. Sci. U. S. A. 98, 53935398 (2001).
38. IUCN: International Union for Conservation of Nature Red List., 2014.
39. Hughes, J.B., Daily, G.C., and Ehrlich, P.R.: Population Diversity: Its extent and extinction. Science 278, 689692 (1997).
40. Ceballos, G. and Ehrlich, P.R.: Mammal population losses and the extinction crisis. Science 296, 904907 (2002).
41. WWF, ZSL, GFN, and WFN: Living Planet Report 2014: Species and Spaces, People and Places; WWF: Gland, Switzerland, 2014.
42. IPCC: Intergovernmental Panel on Climate Change: Fourth Assessment Report (AR4);, 2007.
43. Alroy, J.: Constant extinction, constrained diversification, and uncoordinated stasis in North American mammals: New perspectives on faunal stability in the fossil record. Palaeogeogr., Palaeoclimatol., Palaeoecol. 127, 285311 (1996).
44. Alroy, J.: Equilibrial diversity dynamics in North American mammals. In Biodiversity Dynamics, Turnover of Populations, Taxa, and Communities, Columbia University Press: New York, 1998; pp. 232287.
45. Avise, J.C., Walker, D., and Johns, G.C.: Speciation durations and Pleistocene effects on vertebrate phylogeography. Proc. R. Soc. London B 265, 17071712 (1998).
46. Payne, J.L. and Clapham, M.E.:End-Permian mass extinction in the oceans: An ancient analog for the twenty-first century? Annu. Rev. Earth Planet. Sci. 40, 89111 (2012).
47. Barnosky, A.D., Hadly, E.A., Bascompte, J., Berlow, E.L., Brown, J.H., Fortelius, M., Getz, W.M., Harte, J., Hastings, A., Marquet, P.A., Martinez, N.D., Mooers, A., Roopnarine, P., Vermeij, G., Williams, J.W., Gillespie, R., Kitzes, J., Marshall, C., Matzke, N., Mindell, D.P., Revilla, E., and Smith, A.B.: Approaching a state-shift in Earth's biosphere. Nature 486, 5256 (2012).
48. Urban, M.C., Zarnetske, P.L., and Skelly, D.K.: Moving forward: Dispersal and species interactions determine biotic responses to climate chang. Ann. N. Y. Acad. Sci. 1297, 4460 (2013).
49. Foley, J.A., Ramankutty, N., Brauman, K.A., Cassidy, E.S., Gerber, J.S., Johnston, M., Mueller, N.D., O’Connell, C., Ray, D.K., West, P.C., Balzer, C., Bennett, E.M., Carpenter, S.R., Monfreda, C., Polasky, S., Rockström, J., Sheehan, J., Siebert, S., Tilman, T., and Zaks, D.P.M.: Solutions for a cultivated planet. Nature 478, 337342 (2011).
50. Hooke, R.L., Martín-Duque, J.F., and Pedraza, J.: Land transformation by humans: A review. GSA today 22, 110 (2012). doi: 10.1130/GSAT151A.1.
51. Kovach, R.P., Gharrett, A.J., and Tallmon, D.A.: Genetic change for earlier migration timing in a pink salmon population. Proc. R. Soc. B 279, 38703878 (2012).
52. Reale, D., McAdam, A.G., Boutin, S., and Berteaux, D.: Genetic and plastic responses of a northern mammal to climate change. Proc. R. Soc. London, Ser. B 270, 591596 (2003).
53. Ricke, K.L., Orr, J.C., Schneider, K., and Caldeira, K.: Risks to coral reefs from ocean carbonate chemistry changes in recent earth system model projections. Environ. Res. Lett. 8, 3400334008 (2013).
54. NRC: Review of the Federal Ocean Acidification Research and Monitoring Plan (National Academies Press, Washington, D.C., 2013).
55. Crowder, L., Caldwell, M., Barry, J., Budd, A., Cohen, A., Dunbar, R., Golbuu, Y., Hoegh-Guldberg, O., Hughes, T., Kaufman, L., Kirkpatrick, M., Monismith, S., Palumbi, S., Pandolfi, J., Paytan, A., Richmond, R., Woodson, B., Barshis, D., Kroeker, K., and Kittinger, J.: Consensus Statement on Climate Change and Coral Reefs., 2012.
56. Pandolfi, J.M., Connolly, S.R., Marshall, D.J., and Cohen, A.L.: Projecting coral reef futures under global warming and ocean acidification. Science 333, 418422 (2011).
57. Hoegh-Guldberg, O.: Climate change, coral bleaching, and the future of the world’s coral reefs. Mar. Freshwater Res. 50, 839866 (1999).
58. Palumbi, S.R., Barshis, D.J., Traylor-Knowles, N., and Bay, R.A.: Mechanisms of reef coral resistance to future climate change. Science 344, 895898 (2014).
59. Rosenzweig, M.L., Drumlevitch, F., Borgmann, K.L., Flesch, A.D., Grajeda, S.M., Johnson, G., Mackay, K., Nicholson, K.L., Patterson, V., Pri-Tal, B.M., Ramos-Lara, N., and Serrano, K.P.: An ecological telescope to view future terrestrial vertebrate diversity. Evol. Ecol. Res. 14, 247268 (2012).
60. Williams, J.W. and Jackson, S.T.: Novel climates, no-analog communities, and ecological surprises. Front. Ecol. Environ. 5, 475482 (2007).
61. Williams, J.W., Jackson, S.T., and Kutzbach, J.E.: Projected distributions of novel and disappearing climates by 2100 AD. Proc. Natl. Acad. Sci. U. S. A. 104, 57385742 (2007).
62. Williams, J.W., Shuman, B.N., and Webb, T. III: Dissimilarity analyses of late-Quaternary vegetation and climate in eastern North America. Ecology 82, 33463362 (2001).
63. Barnosky, A.D., Carrasco, M.A., and Graham, R.W.: Collateral mammal diversity loss associated with late Quaternary megafaunal extinctions and implications for the future. In Comparing the Geological and Fossil Records: Implications for Biodiversity Studies, Vol. 358, McGowan, A.J. and Smith, A.B. eds.; Geological Society: London, 2011; pp. 179189.
64. Graham, R.W.: Quaternary mammal communities: Relevance of the individualistic response and non-analogue faunas. Paleontol. Soc. Pap. 11, 141158 (2005).
65. Graham, R.W. and Grimm, E.C.: Effects of global climate change on the patterns of terrestrial biological communities. Trends Ecol. Evol. 5, 289292 (1990).
66. FAUNMAP Working Group: Spatial response of mammals to late quaternary environmental fluctuations. Science 272, 16011606 (1996).
67. Post, E. and Brodie, J.: Anticipating novel conservation risks of increased human access to remote regions with warming. Clim. Change Responses 2, 19 (2015). doi: 10.1186/s40665-015-0011-y.
68. Barton, A., Hales, B., Waldbusser, G.G., Langdon, C., and Feely, R.A.: The Pacific oyster, Crassostrea gigas, shows negative correlation to naturally elevated carbon dioxide levels: Implications for near-term ocean acidification effects. Limnol. Oceanogr. 57, 698710 (2012).
69. Ferrari, M.C.O., Manassa, R.P., Dixson, D.L., Munday, P.L., McCormick, M.I., Meekan, M.G., Sih, A., and Chivers, D.P.: Effects of ocean acidification on learning in coral reef fishes. PLoS One 7, e31478 (2012). doi: 10.1371/journal.pone.0031478.
70. Frommel, A.Y., Maneja, R., Lowe, D., Malzahn, A.M., Geffen, A.J., Folkvord, A., Piatkowski, U., Reusch, T.B.H., and Clemmesen, C.: Severe tissue damage in Atlantic cod larvae under increasing ocean acidification. Nat. Clim. Change 2, 4246 (2011).
71. Hönisch, B., Ridgwell, A., Schmidt, D.N., Thomas, E., Gibbs, S.J., Sluijs, A., Zeebe, R., Kump, L., Martindale, R.C., Greene, S.E., Kiessling, W., Ries, J., Zachos, J.C., Royer, D.L., Barker, S., Marchitto, T.M. Jr, Moyer, R., Pelejero, C., Ziveri, P., Foster, G.L., and Williams, B.: The geological record of ocean acidification. Science 335, 10581063 (2012).
72. Liu, W., Huang, X., Lin, J., and He, M.: Seawater acidification and elevated temperature affect gene expression patterns of the pearl oyster Pinctada fucata . PLoS One 7, e33679 (2012). doi: 10.1371/journal.pone.0033679.
73. Miller, A.W., Reynolds, A.C., Sobrino, C., and Riedel, G.F.: Shellfish face uncertain future in high CO2 world: Influence of acidification on oyster larvae calcification and growth in estuaries. PLoS One 4, e5661 (2009). doi: 10.1371/journal.pone.0005661.
74. Morel, F.M.M., Archer, D., Barry, J.P., Brewer, G.D., Corredor, J.E., Doney, S.C., Fabry, V.J., Hofmann, G.E., Holland, D.S., Kleypas, J.A., Millero, F.J., Riebesell, R., Roberts, S., Park, P., Hughes, K., Chiarello, H., and Logan, C.: Ocean Acidification: A National Strategy to Meet the Challenges of a Changing Ocean (National Academies Press, Washington, D.C., 2010).
75. Munday, P.L., Dixson, D.L., Donelsona, J.M., Jonesa, G.P., Pratchetta, M.S., Devitsinac, G.V., and Døvingd, K.B.: Ocean acidification impairs olfactory discrimination and homing ability of a marine fish. Proc. Calif. Acad. Sci. 106, 18481852 (2009).
76. Bednaršek, N., Feely, R.A., Reum, J.C.P., Peterson, B., Menkel, J., Alin, R., and Hales, B.: Limacina helicina shell dissolution as an indicator of declining habitat suitability owing to ocean acidification in the California current ecosystem. Proc. R. Soc. B 281, 1785 (2014). doi: 10.1098/rspb.2014.0123.
77. EIA: International Energy Outlook 2013 (U.S. Energy Information Administration, 2013).
79. PricewaterhouseCoopers LLP: Two Degrees of Separation: Ambition and Reality—Low Carbon Economy Index 2014 (PricewaterhouseCoopers LLP, London, 2014).
80. Mantyka-Pringle, C.S., Visconti, P., Marco, M.D., Martin, T.G., Rondinini, C., and Rhodes, J.R.: Climate change modifies risk of global biodiversity loss due to land-cover change. Biol. Conserv. 187, 103111 (2015).
81. Faiman, D.: Concerning the global-scale introduction of renewable energies: Technical and economic challenges. MRS Energy & Sustainability 1, 19 (2014). doi: 10.1557/mre.2014.8.
82. Delucchi, M.A. and Jacobson, M.Z.: Providing all global energy with wind, water, and solar power, Part II: Reliability, system and transmission costs, and policies. Energy Policy 29, 11701190 (2011).
83. Jacobson, M.Z. and Delucchi, M.A.: A path to sustainable energy by 2030. Sci. Am. Nov. 2009, 5865 (2009).
84. Jacobson, M.Z. and Delucchi, M.A.: Providing all global energy with wind, water, and solar power, Part I: Technologies, energy resources, quantities and areas of infrastructure, and materials. Energy Policy 29, 11541169 (2011).
85. Chu, S. and Majumdar, A.: Opportunities and challenges for a sustainable energy future. Nature 488, 294303 (2012).
86. Roughead, G., Carl, J., and Hernandez, M.: Powering the Armed Forces: Meeting the Military's Energy Challenges (Hoover Institution Press, Stanford University, Stanford, California, 2012).
87. Barnosky, A.D., Brown, J.H., Daily, G.C., Dirzo, R., Ehrlich, A.H., Ehrlich, P.R., Eronen, J.T., Fortelius, M., Hadly, E.A., Leopold, E.B., Mooney, H.A., Myers, J.P., Naylor, R.L., Palumbi, S., Stenseth, N.C., and Wake, M.H.: Introducing the scientific consensus on maintaining humanity's life support systems in the 21st century: Information for policy makers. Anthropocene Rev. 1, 78109 (2014).
88. Rogelj, J., McCollum, D.L., Reisinger, A., Meinshausen, M., and Riahi, K.: Probabilistic cost estimates for climate change mitigation. Nature 493, 7983 (2012).
89. Kahrl, F. and Roland-Holst, D.: Climate Change in California (University of California Press, Berkeley, 2012).
90. Barnosky, A.D., Hadly, E.A., Dirzo, R., Fortelius, M., and Stenseth, N.C.: Translating science for decision makers to help navigate the Anthropocene. Anthropocene Rev. 1, 111 (2014).
91. Costanza, R., Groot, R.d., Sutton, P., Ploeg, S.v.d., Anderson, S.J., Kubiszewski, I., Farber, S., and Turnerf, R.K.: Changes in the global value of ecosystem services. Global Environ. Change 26, 152158 (2014).
92. Cardinale, B.J., Duffy, J.E., Gonzalez, A., Hooper, D.U., Perrings, C., Venail, P., Narwani, A., Mace, G.M., Tilman, D., Wardle, D.A., Kinzig, A.P., Daily, G.C., Loreau, M., Grace, J.B., Larigauderie, A., Srivastava, D.S., and Naeem, S.: Biodiversity loss and its impact on humanity. Nature 486, 5967 (2012).
93. Sepkoski, J.J.: Patterns of phanerozoic extinction: A perspective from global data bases. In Global Events and event Stratigraphy in the Phanerozoic, Walliser, O.H. ed.; Springer-Verlag: Berlin, 1996; pp. 3551.
94. Sheehan, P.M.: The late Ordovician mass extinction. Annu. Rev. Earth Planet. Sci. 29, 331364 (2001).
95. Sutcliffe, O.E., Dowdeswell, J.A., Whittington, R.J., Theron, J.N., and Craig, J.: Calibrating the late Ordovician glaciation and mass extinction by the eccentricity cycles of Earth's orbit. Geology 28, 967970 (2000).
96. Bambach, R.K.: Phanerozoic biodiversity mass extinctions. Annu. Rev. Earth Planet. Sci. 34, 127155 (2006).
97. Sandberg, C.A., Morrow, J.R., and Zlegler, W.: Late Devonian sea-level changes, catastrophic events, and mass extinctions. In Catastrophic Events and Mass Extinctions: Impacts and beyond, Vol. 356, Koeberl, C. and MacLeod, K.G. eds.; Geological Society of America, Boulder, 2002; pp. 387473.
98. McGhee, G.R.: The Late Devonian Mass Extrinction (Columbia University Press, New York, 1996); 302 pp.
99. Murphy, A.E., Sageman, B.B., and Hollander, D.J.: Eutrophication by decoupling of the marine biogeochemical cycles of C, N, and P: A mechanism for the late devonian mass extinction. Geology 28, 427430 (2000).
100. Algeo, T.J., Scheckler, S.E., and Maynard, J.B.: Effects of the middle to late devonian spread of vascular land plants on weathering regimes, marine biota, and global climate. In Plants Invade the Land: Evolutionary and Environmental Approaches, Gensel, P.G. and Edwards, D. eds.; Columbia University Press: New York, 2000; pp. 213236.
101. Berner, R.A.: Examination of hypotheses for the Permo-Triassic boundary extinction by carbon cycle modeling. Proc. Natl. Acad. Sci. U. S. A. 99, 41724177 (2002).
102. Erwin, D.H.: The Permo-Triassic extinction. Nature 367, 231236 (1994).
103. Payne, J.L., Turchyn, A.V., Paytan, A., DePaolo, D.J., Lehrmann, D.J., Yu, M., and Weig, J.: Calcium isotope constraints on the end-Permian mass extinction. Proc. Natl. Acad. Sci. U. S. A. Early Edition (2010).
104. Knoll, A.H., Bambach, R.K., Payne, J.L., Pruss, S., and Fischer, W.W.: Paleophysiology and end-Permian mass extinction. Earth Planet. Sci. Lett. 256, 295313 (2007).
105. Burgess, S.D., Bowring, S., and Shen, S-z.: High-precision timeline for Earth's most severe extinction. Proc. Natl. Acad. Sci. U. S. A. 111, 33163321 (2014).
106. Shen, S-z., Crowley, J.L., Wang, Y., Bowring, S.A., Erwin, D.H., Sadler, P.M, Cao, C.-j., Rothman, D.H., Henderson, C.M., Ramezani, J., Zhang, H., Shen, Y., Wang, X.-d., Wang, W., Mu, L., Li, W.-z., Tang, Y.-g., Liu, X.-l., Liu, L.-j., Zeng, Y., Jiang, Y.-f., and Jin, Y.-g.: Calibrating the end-Permian mass extinction. Science 334, 13671372 (2012).
107. Sun, Y., Joachimski, M.M., Wignall, P.B., Yan, C., Chen, Y., Jiang, H., Wang, L., and Lai, X.: Lethally hot temperatures during the early Triassic greenhouse. Science 338, 366370 (2012).
108. Hesselbo, S.P., McRoberts, C.A., and Palfy, J.: Triassic-Jurassic boundary events: Problems, progress, possibilities. Palaeogeogr., Palaeoclimatol., Palaeoecol. 244, 110 (2007).
109. Ward, P.D., Haggart, J.W., Carter, E.S., Wilbur, D., Tipper, H.W., and Evans, T.: Sudden productivity collapse associated with the Triassic-Jurassic boundary mass extinction. Science 292, 11481151 (2001).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Energy & Sustainability
  • ISSN: 2329-2229
  • EISSN: 2329-2237
  • URL: /core/journals/mrs-energy-and-sustainability
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 22
Total number of PDF views: 190 *
Loading metrics...

Abstract views

Total abstract views: 441 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 22nd July 2018. This data will be updated every 24 hours.