Hostname: page-component-7c8c6479df-5xszh Total loading time: 0 Render date: 2024-03-28T19:08:58.186Z Has data issue: false hasContentIssue false

Electrical Properties of Si/SiGe Structures Grown by Low Temperature Epitaxy

Published online by Cambridge University Press:  25 February 2011

H. Temkin
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
M. L. Green
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
D. Brasena
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
J. C. Bean
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
Get access

Abstract

Si/SiGe heterostructures offer improved performance for many electronic and optoelectronic Si devices. The expected improvement in device characteristics depends critically on the structural perfection and precise compositional control of the epitaxial layers. This implies a combination of abrupt interfaces, on the order of 10 Å, capability of maintaining high doping levels, in the 1019 cm−3 range, with a similar spatial resolution, and low density of electrically active defects. These requirements are particularly stringent in the case of Ge-rich alloys for which the critical layer thicknesses are below ∼100 Å. The desired characteristics can be obtained by low temperature techniques such as molecular beam epitaxy (MBE) and rapid thermal chemical vapor deposition (RTCVD).

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Temkin, H., Pearsall, T. P., Bean, J. C. and Luryi, S., Appl. Phys. Lett. 48, 963 1986.CrossRefGoogle Scholar
[2] Pearsall, T. P., Temkin, H., Bean, J.C. and Luryi, S., IEEE Electron Dev. Lett., EDL–7, 330 1986.CrossRefGoogle Scholar
[3] Temkin, H., Antreasyan, A., Olsson, N. A., Pearsall, T. P., and Bean, J. C., Applied Phys. Lett. 49, 809 1986.Google Scholar
[4] Temkin, H., Bean, J. C., Antreasyan, A., and Leibenguth, R., Appl. Phys. Lett. 52, 1089 1988.Google Scholar
[5] Iyer, S. S., Patton, G. L., DeLage, S. L., Tiwari, S., and Stork, J. M. C., in Silicon Molecular Beam Epitaxy, eds. Bean, J. C. and Schowalter, L. J., ECS, Pennington, NY., 88–8, 1988 p. 114.Google Scholar
[6] King, C. A., Hoyt, J. L., Gronet, C. M., Gronet, J. F., Gibbons, J. F., Scott, M. P. and Turner, J., IEEE Elect. Dev. Lett. 10, 52 1989.Google Scholar
[7] Tatsumi, T., Hirayama, H., and Aizaki, N., Appl. Phys. Lett. 52, 895 1988.Google Scholar
[8] For review see “Silicon Molecular Beam Epitaxy” eds. Bean, J. C. and Schowalter, L. J., ECS, Pennington, NJ, 88–8, 1988.Google Scholar
[9] Vandenberg, J. M., Bean, J. C., Hamm, R. A., and Hull, R., Appl. Phys. Lett. 52, 1152 1988.CrossRefGoogle Scholar
[10] Vandenberg, J. M., Hamm, R. A., Panish, M. B. and Temkin, H., J. Appl. Phys. 62, 1278 1987.Google Scholar
[11] Luy, J. F., Behr, W. and Kasper, E., Proc. 1st Int. Si-MBE Symp., Toronto, Canada, 1985, p. 236.Google Scholar
[12] Green, M. L., Brasen, D., Luftman, H., and Kannan, V. C., J. Appl. Phys. 65, 2558 1989.Google Scholar
[13] Gibbons, J. F., Gronet, C. M. and Williams, K. E., Appl. Phys. Lett. 47, 721 1985.CrossRefGoogle Scholar
[14] Green, M. L., Brasen, D., Temkin, H., Kannan, V. C., and Luftman, H. S., preceding paper, this symposium.Google Scholar
[15] People, R. and Bean, J. C., Appl. Phys. Lett. 48, 538 1986.Google Scholar