Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-29T03:08:26.473Z Has data issue: false hasContentIssue false

Identification of Transition Metal Sites in Fused SiO2 by X-Ray Absorption Spectroscopy

Published online by Cambridge University Press:  25 February 2011

Farrel W. Lytle
Affiliation:
The Boeing Company, Seattle, WA 98124
Robert B. Greegor
Affiliation:
The Boeing Company, Seattle, WA 98124
Get access

Abstract

X-ray absorption spectroscopy is used to determine valence and site symmetry for all the 3d transition metals in fused quartz prepared by the flame hydrolysis method. The results are compared with optical data on the same samples with generally good agreement.

Type
Articles
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Schultz, P. C., J. Am. Cer. Soc. 57, 309 (1974).Google Scholar
2. Schultz, P. C., “Ultraviolet Absorption of Titanium and Germanium in Fused Silica,” Paper presented at XI Congress on Glass, Prague, Czechoslovakia, July (1977).Google Scholar
3. We thank Dr. Peter C. Schultz for loaning us the samples and for helpful discussions.Google Scholar
4. EXAFS and Near Edge Structure III, edited by Hodgson, K. O., Hedman, B. and Penner-Hahn, J. E. (Springer-Verlag, Berlin, 1984) contains many pertinent references.CrossRefGoogle Scholar
5. An excellent review of early work is given by Parratt, L. G., Rev. Mod. Phys. 31, 616 (1959).Google Scholar
6. Greegor, R. B., Lytle, F. W., Sandstrom, D. R., Wong, Joe, and Schultz, P. C., J. Non-Cryst. Solids 55, 27 (1983).Google Scholar
7. Shackelford, J. F. and Masaryk, J. S., J. Non-Cryst. Solids 30, 127 (1978).Google Scholar
8. Lytle, F. W., Greegor, R. B., Sandstrom, D. R., Marques, E. C., Wong, Joe, Spiro, C. L., Huffman, G. P., and Huggins, F. E., Nucl. Inst. and Methods 226, 542 (1984).Google Scholar
9. Hitchcock, A. P., Beaulieu, S., Steel, T., Stohr, J., and Sette, F., J. Chem. Phys. 80, 3927 (1984).Google Scholar
10. Stohr, J., Gland, J. L., Eberhardt, W., Outka, D., Madix, R. J., Sette, F., Koestner, R. J. and Doebler, U. Phys. Rev. Lett. 51, 2414 (1983).Google Scholar
11. Stohr, J., Sette, F. and Johnson, A. L., Phys. Rev. Lett. 53, 1684 (1984).Google Scholar
12. Wong, J., Lytle, F. W., Messmer, R. P. and Maylotte, D. H. Phys. Rev. B10, 5596 (1984).Google Scholar
13. Kutzler, F. W., Scott, R. A., Berg, J. M., Hodgson, K. O., Doniach, S., Cramer, S. P., and Chang, C. H., J. Am. Chem. Soc. 103, 6083 (1981).Google Scholar
14. McQuillan, B., “Application of Group Theory to X-ray Absorption Edge Studies,” in Physics and Chemistry of Electrons and Ions in Condensed Matter, Acrivos, J. V., Mott, N. F., and Yoffe, A. D., Editors, D. Reidel Publishing Co., Boston (1984), p. 135.Google Scholar
15. Kurkjian, C. R., J. Non-Cryst. Solids 3, 157 (1970). We thank Dr. C. R. Kurkjian for loaning us his samples.CrossRefGoogle Scholar
16. Wong, J. and Angell, C. A., Glass Structure by Spectroscopy (Marcel Dekker, New York, 1976).Google Scholar