Skip to main content Accessibility help

Micro-Raman Scattering From Hexagonal GaN, AlN, and AlxGa1-xN Grown on (111) Oriented Silicon: Stress Mapping of Cracks

  • C. Ramkumar (a1), T. Prokofyeva (a1), M. Seon (a2), M. Holtz (a1), K. Choi (a3), J. Yun (a3), S. A. Nikishin (a3) and H. Temkin (a3)...


We report post-growth micro-Raman stress mapping of cracks in GaN, AlN, and AlxGa1-xN grown on (111) oriented silicon. Cracks with an average spacing of ~ 100 m are observed. These cracks are categorized into two types. The first type of crack propagates through the epilayer, and several microns deep into the substrate and is observed in all the samples investigated. The second type cracks epilayer only and is observed only in GaN. The micro-Raman stress mapping of the first type of crack shows that the epilayers are under biaxial tensile (< 0) stress and the silicon substrate is under compressive (> 0) stress far away from the cracks. The stress in the epilayers as well the substrate is found to relax from the equilibrium (far away from the cracks) value of –0.5 GPa (AlN), -0.16 GPa (GaN), -0.6 GPa (AlxGa1-xN) and 0.36 GPa (Si) as the crack position is approached. Partial relaxation is observed to occur over a range of 10 m m. At the crack position, the epilayers and the substrate are relaxed to nearly zero stress values. The stress mapping of the second type of crack reveals that the substrate is completely relaxed (stress is close o zero) far away from the cracks. At the crack position the GaN epilayer is partially relaxed from –0.2 GPa to –0.08 GPa, while the silicon substrate is seen to be under tensile stress of –0.39 GPa. The stress map of epilayers is well described by the distributed force model for both types of cracks. Furthermore, the calculated stress profiles of cracked and uncracked substrate using the above mentioned model are in excellent agreement with the experimental data.



Hide All
1. Pearton, S. J., Zolper, J. C., Shul, R. J., and Ren, F., J. Appl. Phys. 86, 1 (1999).
2. Kisielowski, C., Krüger, J., Ruvimov, S., Suski, T., Ager, J. W., Jones, E., Liliental, Z. Weber, Rubin, M., Weber, E. R., Bremser, M. D., and Davis, R. F., Phys. Rev. B 54, 17745 (1996).
3. Prokofyeva, T., Seon, M., Vanbuskirk, J., Holtz, M., Nikishin, S. A., Faleev, N. N., Temkin, H., and Zollner, S., Phys. Rev. B 63, 125313 (2001).
4. Nikishin, S. A., Faleev, N. N., Antipov, V. G., Francoeur, S., Peralta, L. Grave de, Seryogin, G. A., Temkin, H., Prokofyeva, T. I., Holtz, M., and Chu, S. N. G., Appl. Phys. Lett. 75, 2073 (1999).
5. Nikishin, S. A., Antipov, V. G., Francoeur, S., Faleev, N. N., Seryogin, G. A., Elyukhin, V. A., Temkin, H., Prokofyeva, T. I., Holtz, M., Konkar, A., and Zollner, S., Appl. Phys. Lett. 75, 484 (1999).
6. Semond, F., Lorenzini, P., Grandjean, N., and Massies, J., Appl. Phys. Lett. 78, 335 (2001).
7. Hearne, S. J., Han, J., Lee, S. R., Floro, J. A., Foolstaedt, D. M., Chason, E., and Tsong, I. S. T., Appl. Phys. Lett. 76, 1534 (2000).
8. Romano, L. T., Walle, C. G. Van de, Ager, J. W., Götz, W., and Kern, R. S., J. Appl. Phys. 87, 7745 (2000).
9. Etzkorn, E. V. and Clarke, D. R., J. Appl. Phys. 89, 1025 (2001).
10. Hu, S. M., J. Appl. Phys. 50, 4661 (1979).
11. Atkinson, A., Johnson, T., Harker, A. H., and Jain, S. C., Thin Solid Films 274, 106 (1996).
12. Follstaedt, D. M., Han, J., Provencio, P., and Fleming, J. G., MRS Internet J. Nitride Semicond. Res. 4S1, G3.72 (1999).
13. Seon, M., Prokofyeva, T., Holtz, M., Nikishin, S. A., Faleev, N. N., and Temkin, H., Appl. Phys. Lett. 76, 1842 (2000).
14. Siegle, H., Thurian, P., Eckey, L., Hoffmann, A., Thomsen, C., Meyer, B. K., Amano, H., Akasaki, I., Detchprohm, T., and Hiramatsu, K., Appl. Phys. Lett. 68, 1265 (1996).
15. Lee, I. H., Choi, I. H., Lee, C. R., Shin, E. J., Kim, D., Noh, S. K., Son, S. J., Lim, K. Y., and Lee, H. J., J. Appl. Phys. 83, 5787 (1998).
16. Wolf, I. De, Vanhellemont, J., Romano-Rodríguez, A., Norström, H., and Maes, H. E., J. Appl. Phys. 71, 898 (1992).
17. Davydov, V. Yu., Kitaev, Yu. E., Goncharuk, I. N., Smirnov, A. N., Graul, J., Semchinova, O., Uffmann, D., Smirnov, M. B., Mirgorodsky, A. P., and Evarestov, R. A., Phys. Rev. B 58, 12899 (1998).
18. Gerlich, D., Dole, S. L., and Slack, A., J. Phys. Chem. Solids 47, 437 (1986).
19. Anastassakis, E., Cantarero, A., and Cardona, M., Phys. Rev. B 41, 7529 (1990).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Online Proceedings Library (OPL)
  • ISSN: -
  • EISSN: 1946-4274
  • URL: /core/journals/mrs-online-proceedings-library-archive
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed