Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-26T06:40:23.063Z Has data issue: false hasContentIssue false

MOF-177/graphene composite as a selective sensor for nitro aromatic compounds

Published online by Cambridge University Press:  01 June 2015

Venkata Neti*
Affiliation:
Department of Chemistry, University of Texas at El Paso, El Paso, Texas 79968
Get access

Abstract

A zinc-based metal-organic framework, MOF-177, was synthesized on the surface of benzoic acid functionalized reduced graphene oxide (BFG). Large amount of BFG (30wt %) slightly improved the stability of the MOF on the graphene surface, decreased the porosity of the composite, and resulted in 1mm long and 50µm wide microrods of MOF-177/BFG composites which act as a selective sensor for trinitrophenol compared to trinitrotoluene.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Novoselov, , Nat. Mater., 6, 183 (2007).CrossRefGoogle Scholar
Stankovich, S., Dikin, D. A., Dommett, G. H. B., Kohlhaas, K. M., Zimney, E. J., Stach, E. A., Piner, R. D., Nguyen, S. B. T., Ruoff, R. S., Nature., 442, 282 (2006).CrossRefGoogle Scholar
Allen, M., Tung, V., Kaner, R. B., Chem. Rev., 110, 132 (2010).CrossRefGoogle Scholar
Petit, T. J. Bandosz, J. Phys. Chem. C., 113, 3800 (2009).CrossRefGoogle Scholar
Bekyarova, , Sarkar, S., Wang, F., Itkis, M. E., Kalinina, I., Tian, X., Haddon, R. C., Acc. Chem. Res., 46, 65 (2013).CrossRefGoogle Scholar
Yaghi, O. M., Li, H., J. Am. Chem. Soc., 117, 10401 (1995).CrossRefGoogle Scholar
Chae, H. K., Siberio-Perez, D. Y., Kim, J., Go, Y.-B., Eddaoudi, M., Matzger, A. J., O'Keeffe, M., Yaghi, O. M., Nature, 427, 523 (2004).CrossRefGoogle Scholar
Peng, P., Li, F.-F., Bowles, F. L., Neti, V. S. P. K., Metta-Magana, A. J., Olmstead, M. M., Balch, A. L. and Echegoyen, L., Chem. Commun., 49(31), 32093211 (2013).CrossRefGoogle Scholar
Peng, P., Li, F.-F., Neti, V. S. P. K., Metta-Magaña, A. J. and Echegoyen, L., Angew. Chem., Int. Ed., 53(1), 160163 (2014).CrossRefGoogle Scholar
Neti, V. S. P. K., Metta-Magaña, A. J. and Echegoyen, L., Journal of Coordination Chemistry, 66(18), 31933198 (2013).CrossRefGoogle Scholar
Feng, X., Ding, X., and Jiang, D., Chem. Soc. Rev., 41, 6010 (2012).CrossRefGoogle Scholar
Neti, V. S. P. K., Wu, X., Deng, S. and Echegoyen, L., CrystEngComm, 5(35), 68926895 (2013).CrossRefGoogle Scholar
Neti, V. S. P. K., Wu, X., Hosseini, M., Bernal, R. A., Deng, S. and Echegoyen, L., CrystEngComm, 15(36), 71577160 (2013).CrossRefGoogle Scholar
Xu, Y., Jin, S., Xu, H., Nagai, A. and Jiang, D., Chem. Soc. Rev., 42, 8012 (2013).CrossRefGoogle Scholar
Neti, V. S. P. K., Wu, X., Deng, S. and Echegoyen, L., Polymer Chemistry, 4(17), 45664569 (2013).CrossRefGoogle Scholar
Neti, V. S. P. K., Wu, X., Peng, P., Deng, S. and Echegoyen, L., RSC Advances, 4(19), 96699672 (2014).CrossRefGoogle Scholar
Neti, V. S. P. K., Wang, J., Deng, S. and Echegoyen, L., RSC Advances, 5(15), 1096010963 (2015).CrossRefGoogle Scholar
K Neti, V. S. P., Cerón, M. R., Duarte-Ruiz, A., Olmstead, M. M., Balch, A. L., Echegoyen, L., Chemical Communications, 50(73), 1058410587 (2015).CrossRefGoogle Scholar
Kaur, P., Hupp, J. T., Nguyen, S. T., ACS Catal., 1, 819 (2011).CrossRefGoogle Scholar
Lan, K., Li, H., Wu, D., Olson, T. J., Emge, W., Ki, M., Hong, M., and Li, J., Angew. Chem., Int. Ed., 48, 2334 (2009).CrossRefGoogle Scholar
Petit, C., Bandosz, T. J., Adv. Mater., 21, 4753 (2009).CrossRefGoogle Scholar
Jahan, M., Bao, Q., Yang, J-X., Loh, K. P., J. Am. Chem. Soc., 132, 14487 (2010).CrossRefGoogle Scholar