Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-06-07T09:45:42.184Z Has data issue: false hasContentIssue false

Orientation and Composition Dependence of Piezoelectric-Dielectric Properties of Sputtered Pb(Zrx,Ti1-x)O3 Thin Films

Published online by Cambridge University Press:  10 February 2011

S. Hiboux
Affiliation:
Ceramics Laboratory, Materials Department, EPFL Swiss Federal Institute of Technology, CH- 1015 Lausanne, Switzerland
P. Muralt
Affiliation:
Ceramics Laboratory, Materials Department, EPFL Swiss Federal Institute of Technology, CH- 1015 Lausanne, Switzerland
N. Setter
Affiliation:
Ceramics Laboratory, Materials Department, EPFL Swiss Federal Institute of Technology, CH- 1015 Lausanne, Switzerland
Get access

Abstract

In-situ, reactively sputter deposited 300 nm thick Pb(Zrx,Ti1-x)O3 films on Pt/Si based substrates are investigated as a function of composition and texture. (111) PZT is grown on a (111) oriented Pt bottom electrode covered with a very thin TiO2 film. Highly {100} oriented PZT is grown on Pt (111) by means of a 10 nm thick PbTiO3 seed layer. Pronounced deviations from known bulk PZT behavior are observed for the (111) texture. Maximum of d33 and ε are shifted to 40/60 and 45/55 compositions, respectively. (100) textured films exhibit a higher d33. 1.3 μm (100) thick films attain the predicted d33 value of clamped bulk ceramics. Coercive fields and voltage offsets increase strongly with increasing Ti content. In parallel, the as-grown polarization increases. Polarization switching is not possible for x ≤ 0.1. Post-anneals in O2 and hot poling show that oxygen vacancies play an important role in this phenomenon. Ti-rich (100) oriented films exhibit very high and stable pyroelectric and piezoelectric coefficients whithout poling treatments.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Muralt, P., Kohli, M., Maeder, T., Kholkin, A., Brooks, K., Setter, N., and Luthier, R., Sensors and actuators A 48, 157165 (1995).Google Scholar
2. Jones, R. E., Zürcher, P., Chou, P., Taylor, D. J., Lii, Y. T., Jiang, B., Maniar, P. D., and Gillespie, S. J., Microelectronic Eng. 29, 310 (1995).Google Scholar
3. Kohli, M., Wüthrich, C., Brooks, K. G., Willing, B., Forster, M., Muralt, P., Setter, N., and Ryser, P., Sensors and Actuators A 60, 147153 (1997).Google Scholar
4. Kholkin, A. L., Wütchrich, C., Taylor, D. V., and Setter, N., Rev. Sci. Instrum. 67, 19351941 (1996).Google Scholar
5. Jaffe, B., Cook, J. W. R., and Jaffe, H., Piezoelectric Ceramics (Academic press, London and New York, 1971).Google Scholar
6. Du, X.-H., Zheng, J., Belegundu, U., and Uchino, K., Appl. Phys. Lett. 72, 24212423 (1998).Google Scholar
7. Hiboux, S., Muralt, P., and Maeder, T., J. Mat. Res. 14 (1999).Google Scholar
8. Pike, G. E., Warren, W. L., Dimos, D., Tuttle, B. A., Ramesh, R., Lee, J., Keramidas, V. G., and Evans, J. J. T., Appl. Phys. Lett. 66, 484486 (1995).Google Scholar
9. Lee, E. G., Wouters, D. J., Willems, G., and Maes, H. E., Appl. Phys. Lett. 70,24042406 (1997).Google Scholar
10. Prokopalo, O. I., Soy. Phys. Solid State 21, 17681770 (1979).Google Scholar