Skip to main content
×
×
Home

Study of Interface Properties of InN and InN-Based Heterostructures by Molecular Beam Epitaxy

  • Hai Lu (a1), William J. Schaff (a1), Lester F. Eastman (a1) and Colin Wood (a2)
Abstract

In this work, we prepared epitaxial InN on (0001) sapphire with an AlN or GaN buffer layer by molecular beam epitaxy (MBE). A series of samples were grown with different thickness under the optimized growth conditions. Films were characterized by x-ray diffraction (XRD), reflective high-energy electron diffraction (RHEED), atomic-force microscopy (AFM), transmission electron microscopy (TEM) and Hall measurements. By extrapolating the fitted curve of sheet carrier density vs. film thickness to zero film thickness, a strong residual sheet charge was derived, which may be located at the interface between the buffer layer and the InN film, or at the near-surface. It was found that for InN film on AlN buffer, the residual sheet charge is about 4.3×1013 cm-2, while for InN films on GaN buffer, the residual sheet charge is about 2.5×1013 cm-2. At present, we tentatively believe that the residual charge is surface charge accumulation similar to what is observed at the InAs surface. InN samples with Hall mobility beyond 1300 cm2/Vs and carrier concentration below 2×1018 cm-3 were routinely achieved in this study.

The first study on InN-based FET structures was performed. Amorphous AlN was used as the barrier material, which was prepared by migration enhanced epitaxy (MEE) at low growth temperature. It was found that the surface morphology is improved after an AlN barrier layer is added to InN. Hg was used as a back-to-back Schottky metallization. Very low leakage current and weak rectifying behavior were observed.

Copyright
References
Hide All
1.Strite, S. and Morkoc, H., J. Vac, Sci. & Technol. B 10, 1237 (1992).
2.O'Leary, S. K., Foutz, B. E., Shur, M. S. and Eastman, L. F., J. Appl. Phys. 83, 826 (1998).
3.Bellotti, E., Doshi, B. K., Brennan, K. F., Albrecht, J. D., Ruden, P. P., J. Appl. Phys. 85, 916 (1999).
4.Foutz, B. E., O'Leary, S. K., Shur, M. S. and Eastman, L. F., J. Appl. Phys. 85, 7727 (1999).
5.Lu, H., Schaff, W. J., Hwang, J., Wu, H., Yeo, W., Pharkya, A., and Eastman, L. F., Appl. Phys. Lett. 77, 2548 (2000).
6.Lu, H., Schaff, W. J., Hwang, J., Wu, H., Goutam, K. and Eastman, L. F., Appl. Phys. Lett. 79, 1489 (2001).
7.Noguchi, M., Hirakawa, K. and Ikoma, T., Phys. Rev. Lett. 66, 2243 (1991).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Online Proceedings Library (OPL)
  • ISSN: -
  • EISSN: 1946-4274
  • URL: /core/journals/mrs-online-proceedings-library-archive
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 5 *
Loading metrics...

Abstract views

Total abstract views: 71 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 23rd May 2018. This data will be updated every 24 hours.