Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-26T02:27:40.028Z Has data issue: false hasContentIssue false

White Beam Synchrotron X-ray Topography and X-ray Diffraction Measurements of Epitaxial Lateral Overgrowth of GaN

Published online by Cambridge University Press:  21 March 2011

W.M. Chen
Affiliation:
Microelectronics Group, Research Institute for Networks and Communications Engineering (RINCE), Dublin City University, Dublin 9, Ireland.
P.J. McNally
Affiliation:
Microelectronics Group, Research Institute for Networks and Communications Engineering (RINCE), Dublin City University, Dublin 9, Ireland.
K. Jacobs
Affiliation:
Department of Information Technology (INTEC), University of Gent, B-9000, Belgium.
T. Tuomi
Affiliation:
Optoelectronics Laboratory, Helsinki University of Technology, FIN-02015 TKK, Finland. 4 D-79108 Freiburg, Germany.
A.N. Danilewsky
Affiliation:
Optoelectronics Laboratory, Helsinki University of Technology, FIN-02015 TKK, Finland. 4 D-79108 Freiburg, Germany.
D. Lowney
Affiliation:
Microelectronics Group, Research Institute for Networks and Communications Engineering (RINCE), Dublin City University, Dublin 9, Ireland.
J. Kanatharana
Affiliation:
Microelectronics Group, Research Institute for Networks and Communications Engineering (RINCE), Dublin City University, Dublin 9, Ireland.
L. Knuuttila
Affiliation:
Optoelectronics Laboratory, Helsinki University of Technology, FIN-02015 TKK, Finland. 4 D-79108 Freiburg, Germany.
J. Riikonen
Affiliation:
Optoelectronics Laboratory, Helsinki University of Technology, FIN-02015 TKK, Finland. 4 D-79108 Freiburg, Germany.
Get access

Abstract

The Epitaxial Lateral Overgrowth (ELO) of GaN on Al2O3 using a SiO2 mask with different fill factors (ratio of stripe opening width to stripe period) is examined with White Beam Synchrotron X-ray Topography (WBSXT) and X-ray rocking curve analysis. The sapphire substrate was identified with a dislocation density of the order of ~106cm-2. WBSXT in both transmission and back reflection mode is used to image the ELO GaN and confirms that crystal planes in the lateral overgrown part (wing) are tilted, and that the wing tilt increases as the fill factor increases. X-ray rocking curve and WBSXT measurements confirm the same wing tilt tendency as the fill factor changes. The WBSXT method provides a measure of the maximum wing tilt, while the X-ray rocking curve method gives the average wing tilt. The average wing tilt reaches about 1602 arcsec at a fill factor of 0.625, but the maximum wing tilts can reach values as large as 2372 arcsec when the fill factor is only 0.571. This study shows that WBSXT is an effective method in dislocation and wing tilt determination for the GaN on Al2O3 ELO epilayer system or indeed for similar systems. The tilted wings induce a slightly lower compressive stress in the coalesced region of the GaN epilayer.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ambacher, O., J. Physics D. 31, 2653(1998).Google Scholar
2. Nakamura, S., Fasol, G., “The Blue Laser Diode: GaN based light emitters and lasers”, Springer-Verlag, Berlin, 1997.Google Scholar
3. Gerhard, F., Science, 278, 1902(1997).Google Scholar
4. Fini, P., Marchand, H., Ibbetson, J. P., DenBaars, S. P., Mishra, U. K., Speck, J. S.. J. Cryst. Growth, 209, 581 (2000).Google Scholar
5. Nakamura, S., Senoh, M., Nagahama, S.-I., Iwasa, N., Yamada, T., Matsushita, T., Kiyoku, H., Sugimoto, Y., Kozaki, T., Umemoto, H., Sano, M., Chocho, K., Appl. Phys. Lett. 72, 211 (1998).Google Scholar
6. Marchand, H., Wu, X.H., Ibbetson, J.P., Fini, P.T., Kozodoy, P., Keller, S., Speck, J.S., DenBaars, S.P., Mishra, U.K., Appl. Phys. Lett. 73, 747 (1998).Google Scholar
7. Zheleva, T.S., Nam, O.-H., Ashmawi, W.M., Griffin, D. J., Davis, R. F., J. Cryst. Growth, 222, 706 (2001).Google Scholar
8. Razeghi, M., Sandvik, P., Kung, P., Walker, D., Mi, K., Zhang, X., Kumar, V., Diaz, J., Shahedipour, F., Mater. Sci. & Eng. B, 74, 107 (2000).Google Scholar
9. Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Matushita, T., Mukai, T., MRS Internet J. Nitride Semicond. Res. 4S1, G1.1 (1999); http://nsr.mij.mrs.org/4s1/g1.1/.Google Scholar
10. Chen, W.M., McNally, P.J., Yu, V. Shvydko, Tuomi, T., Lerche, M., Danilewsky, A.D., Kanatharana, J., Lowney, D., O'Hare, M., Knuuttila, L., Riikonen, J., and Rantamaki, R., Phys. Stat. Sol. (A), 186, 365 (2001).Google Scholar
11. Kohler, R., Jenichen, B., Raidt, H., Bauser, E., Nagel, N., J. Phys. D. 28, A50 (1995).Google Scholar
12. Rantamäki, R., Tuomi, T., Zytkiewicz, Z.R., Domagala, J., McNally, P.J., Danilewsky, A.N., J. Appl. Phys. 86, 4298 (1999).Google Scholar
13. Chen, W.M., McNally, P.J., Jacobs, K., Tuomi, T., Kanatharana, J., Lowney, D., Knuuttila, L., Riikonen, J. and Toivonen, J. (4th Int. Conf. On Matls. for Microelectronics & Nanoengineering, Finland, June, 2002).Google Scholar