Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-28T00:59:07.875Z Has data issue: false hasContentIssue false

Banach spaces of bounded solutions of Δu = Pu (P ≥ 0) on hyperbolic riemann surfaces

Published online by Cambridge University Press:  22 January 2016

Mitsuru Nakai*
Affiliation:
Nagoya University
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Consider a nonnegative Hölder continuous 2-form P(z)dxdy on a hyperbolic Riemann surface R (z = x + iy). We denote by PB(R) the Banach space of solutions of the equation Δu = Pu on R with finite supremum norms. We are interested in the question how the Banach space structure of PB(R) depends on P. Precisely we consider two such 2-forms P and Q on R and compare PB(R) and QB(R). If there exists a bijective linear isometry T of PB(R) to QB(R), then we say that PB(R) and QB(R) are isomorphic.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1974

References

[1] Brelot, M.: Étude des intégrales de la chaleur Δu = cu, c ≧ 0, au voisinage d’un point singulier du coéfficient, Ann. Éc, N. Sup., 48 (1931), 153246.CrossRefGoogle Scholar
[2] Brelot, M.: Sur un théorème de non existence relatif à l’équation Δu = cu , Bull, Sci. Math., 56 (1932), 389395.Google Scholar
[3] Cornea, C. Constantinescu-A.: Ideale Ränder Riemannscher Flächen, Springer, 1963.Google Scholar
[4] Schwartz, N. Dunford-L.: Linear Operators, Part I: General Theory, Interscience Publishers, 1957.Google Scholar
[5] Katz, M. Glasner-R.: On the behavior of solutions of Δu = Pu at the Royden boundary, J. d’Analyse Math., 22 (1969), 345354.Google Scholar
[6] Heins, M.: On the Lindelöf principle, Ann. of Math., 61 (1955), 440473.Google Scholar
[7] Lahtinen, A.: On the solutions of Δu = Pu for acceptable densities on open Riemann surfaces, Ann. Acad. Sci. Fenn., 515 (1972).Google Scholar
[8] Loeb, P.: An axiomatic treatment of pairs of elliptic differential equations, Ann. Inst. Fourier, 16 (1966), 167208.Google Scholar
[9] Maeda, F.-Y.: Boundary value problems for the equation Δu – qu = 0 with respect to an ideal boundary, J. Sci. Hiroshima Univ., 32 (1968), 85146.Google Scholar
[10] Miranda, C.: Partial Differential Equations of Elliptic Type, Springer, 1970.Google Scholar
[11] Myrberg, L.: Über die Integration der Differential gleichung Δu = c(P)u auf offenen Riemannschen Flächen, Math. Scand., 2 (1954), 142152.Google Scholar
[12] Myrberg, L.: Über die Existenz der Greenschen Funktion der Gleichung Δu = c(P)u auf Riemannschen Flächen, Ann. Acad. Sci. Fenn., 170 (1954).Google Scholar
[13] Myrberg, L.: Über die Integration der Gleichung Δu = c(z)u auf einer Riemannschen Fläche im indefiniten Fall, Ann. Acad. Sci. Fenn., 514 (1972).Google Scholar
[14] Nakai, M.: The space of bounded solutions of the equation Δu – pu on a Riemann surface, Proc. Japan Acad., 36 (1960), 267272.Google Scholar
[15] Nakai, M.: Dirichlet finite solutions of Δu = Pu, and classification of Riemann surfaces, Bull. Amer. Math. Soc., 77 (1971), 381385.CrossRefGoogle Scholar
[16] Nakai, M.: Order comparisons on canonical isomorphisms, Nagoya Math. J., 50 (1973), 6787.Google Scholar
[17] Ozawa, M.: Classification of Riemann surfaces, Kōdai Math. Sem. Rep., 4 (1952), 6376.Google Scholar
[18] Royden, H.: The equation Δu – Pu and the classification of open Riemann surfaces, Ann. Acad. Sci. Fenn., 271 (1959).Google Scholar
[19] Nakai, L. Sario-M.: Classification Theory of Riemann Surfaces, Springer, 1970.Google Scholar
[20] Singer, I.: Image set of reduction operator for Dirichlet finite solutions of Δu – Pu , Proc. Amer. Math. Soc., 32 (1972), 464468.Google Scholar
[21] Singer, I.: Boundary isomorphism between Dirichlet finite solutions of Δu – Pu and harmonic functions, Nagoya Math. J., 50 (1973), 720.Google Scholar