Skip to main content
×
×
Home

CHARACTERIZATION OF PROJECTIVE SPACES AND $\mathbb{P}^{r}$ -BUNDLES AS AMPLE DIVISORS

  • JIE LIU (a1)
Abstract

Let $X$ be a projective manifold of dimension $n$ . Suppose that $T_{X}$ contains an ample subsheaf. We show that $X$ is isomorphic to $\mathbb{P}^{n}$ . As an application, we derive the classification of projective manifolds containing a $\mathbb{P}^{r}$ -bundle as an ample divisor by the recent work of Litt.

Copyright
References
Hide All
[1] Andreatta, M. and Wiśniewski, J. A., On manifolds whose tangent bundle contains an ample subbundle , Invent. Math. 146(1) (2001), 209217.
[2] Aprodu, M., Kebekus, S. and Peternell, T., Galois coverings and endomorphisms of projective varieties , Math. Z. 260(2) (2008), 431449.
[3] Araujo, C., Rational curves of minimal degree and characterizations of projective spaces , Math. Ann. 335(4) (2006), 937951.
[4] Araujo, C. and Druel, S., On Fano foliations , Adv. Math. 238 (2013), 70118.
[5] Araujo, C., Druel, S. and Kovács, S. J., Cohomological characterizations of projective spaces and hyperquadrics , Invent. Math. 174(2) (2008), 233253.
[6] Bădescu, L., “ Hyperplane sections and deformations ”, in Algebraic Geometry, Bucharest 1982 (Bucharest, 1982), Lecture Notes in Mathematics 1056 , Springer, Berlin, 1984, 133.
[7] Beltrametti, M. C. and Ionescu, P., “ A view on extending morphisms from ample divisors ”, in Interactions of Classical and Numerical Algebraic Geometry, Contemporary Mathematics 496 , American Mathematical Society, Providence, RI, 2009, 71110.
[8] Beltrametti, M. C. and Sommese, A. J., The Adjunction Theory of Complex Projective Varieties, de Gruyter Expositions in Mathematics 16 , Walter de Gruyter & Co., Berlin, 1995.
[9] Bosch, S., Lütkebohmert, W. and Raynaud, M., Formal and rigid geometry. IV. The reduced fibre theorem , Invent. Math. 119(2) (1995), 361398.
[10] Campana, F., Connexité rationnelle des variétés de Fano , Ann. Sci. Éc. Norm. Supér. (4) 25(5) (1992), 539545.
[11] Campana, F., Orbifolds, special varieties and classification theory , Ann. Inst. Fourier (Grenoble) 54(3) (2004), 499630.
[12] Campana, F. and Peternell, T., Rational curves and ampleness properties of the tangent bundle of algebraic varieties , Manuscripta Math. 97(1) (1998), 5974.
[13] Fania, M. L., Sato, E.-i. and Sommese, A. J., On the structure of 4-folds with a hyperplane section which is a P 1 bundle over a surface that fibres over a curve , Nagoya Math. J. 108 (1987), 114.
[14] Grothendieck, A., Éléments de géométrie algébrique. II. Étude globale élémentaire de quelques classes de morphismes , Publ. Math. Inst. Hautes Études Sci. 8 (1961), 222.
[15] Grothendieck, A., Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. II , Publ. Math. Inst. Hautes Études Sci. 24 (1965), 231.
[16] Grothendieck, A., Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. III , Publ. Math. Inst. Hautes Études Sci. 28 (1966), 255.
[17] Hartshorne, R., Ample vector bundles , Publ. Math. Inst. Hautes Études Sci. 29 (1966), 6394.
[18] Hartshorne, R., Algebraic Geometry, Graduate Texts in Mathematics 52 , Springer, New York, 1977.
[19] Kollár, J., Rational Curves on Algebraic Varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics] 32 , Springer, Berlin, 1996.
[20] Kollár, J., Singularities of the Minimal Model Program, Cambridge Tracts in Mathematics 200 , Cambridge University Press, Cambridge, 2013, With a collaboration of Sándor Kovács.
[21] Kollár, J., Miyaoka, Y. and Mori., S., Rational connectedness and boundedness of Fano manifolds , J. Differential Geom. 36(3) (1992), 765779.
[22] Kubota, K., Ample sheaves , J. Fac. Sci. Univ. Tokyo Sect. I A Math. 17 (1970), 421430.
[23] Litt, D., Manifolds containing an ample P 1 -bundle , Manuscripta Math. 152(3) (2017), 533537.
[24] Miyaoka, Y., “ Deformations of a morphism along a foliation and applications ”, in Algebraic Geometry, Bowdoin 1985 (Brunswick, Maine, 1985), Proceedings of Symposia in Pure Mathematics 46 , American Mathematical Society, Providence, RI, 1987, 245268.
[25] Mori, S., Projective manifolds with ample tangent bundles , Ann. of Math. (2) 110(3) (1979), 593606.
[26] Sommese, A. J., On manifolds that cannot be ample divisors , Math. Ann. 221(1) (1976), 5572.
[27] Wahl, J. M., A cohomological characterization of P n , Invent. Math. 72(2) (1983), 315322.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Nagoya Mathematical Journal
  • ISSN: 0027-7630
  • EISSN: 2152-6842
  • URL: /core/journals/nagoya-mathematical-journal
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed