Skip to main content Accessibility help
×
Home

COHOMOLOGICAL LENGTH FUNCTIONS

  • HENNING KRAUSE (a1)

Abstract

We study certain integer valued length functions on triangulated categories, and establish a correspondence between such functions and cohomological functors taking values in the category of finite length modules over some ring. The irreducible cohomological functions form a topological space. We discuss its basic properties, and include explicit calculations for the category of perfect complexes over some specific rings.

Copyright

References

Hide All
[1] Auslander, M., Representation theory of Artin algebras. II , Comm. Algebra 1 (1974), 269310.
[2] Auslander, M. and Reiten, I., Grothendieck groups of algebras and orders , J. Pure Appl. Algebra 39(1–2) (1986), 151.
[3] Benson, D. J. and Parker, R. A., The Green ring of a finite group , J. Algebra 87(2) (1984), 290331.
[4] Bongartz, K., A generalization of a theorem of M. Auslander , Bull. Lond. Math. Soc. 21(3) (1989), 255256.
[5] Crawley-Boevey, W., “ Modules of finite length over their endomorphism rings ”, in Representations of Algebras and Related Topics (Kyoto, 1990), London Math. Soc. Lecture Note Ser. 168 , Cambridge University Press, Cambridge, 1992, 127184.
[6] Crawley-Boevey, W., Locally finitely presented additive categories , Comm. Algebra 22(5) (1994), 16411674.
[7] Crawley-Boevey, W., Additive functions on locally finitely presented Grothendieck categories , Comm. Algebra 22(5) (1994), 16291639.
[8] Eisenbud, D. and Ermann, D., Categorified duality in Boij–Söderberg theory and invariants of free complexes, preprint, 2012, arXiv:1205.0449v1.
[9] Eisenbud, D. and Schreyer, F.-O., Betti numbers of graded modules and cohomology of vector bundles , J. Amer. Math. Soc. 22(3) (2009), 859888.
[10] Freyd, P., “ Stable homotopy ”, in Proc. Conf. Categorical Algebra (La Jolla, CA, 1965), Springer, New York, 1966, 121172.
[11] Gabriel, P., Des catégories abéliennes , Bull. Soc. Math. France 90 (1962), 323448.
[12] Garkusha, G. and Prest, M., Triangulated categories and the Ziegler spectrum , Algebr. Represent. Theory 8(4) (2005), 499523.
[13] Geigle, W., The Krull–Gabriel dimension of the representation theory of a tame hereditary Artin algebra and applications to the structure of exact sequences , Manuscripta Math. 54 (1985), 83106.
[14] Gruson, L., “ Simple coherent functors ”, in Representations of Algebras, Lecture Notes in Mathematics 488 , Springer, Berlin, 1975, 156159.
[15] Gruson, L. and Jensen, C. U., “ Dimensions cohomologiques reliées aux foncteurs lim (i) ”, in Paul Dubreil and Marie–Paule Malliavin Algebra Seminar, 33rd Year (Paris, 1980), Lecture Notes in Math. 867 , Springer, Berlin, 1981, 234294.
[16] Herzog, I., Elementary duality of modules , Trans. Amer. Math. Soc. 340(1) (1993), 3769.
[17] Herzog, I., The endomorphism ring of a localized coherent functor , J. Algebra 191(1) (1997), 416426.
[18] Hochster, M., Prime ideal structure in commutative rings , Trans. Amer. Math. Soc. 142 (1969), 4360.
[19] Jensen, B. T., Su, X. and Zimmermann, A., Degeneration-like orders in triangulated categories , J. Algebra Appl. 4(5) (2005), 587597.
[20] Krause, H., The spectrum of a locally coherent category , J. Pure Appl. Algebra 114(3) (1997), 259271.
[21] Krause, H., Generic modules over Artin algebras , Proc. Lond. Math. Soc. (3) 76(2) (1998), 276306.
[22] Krause, H., Exactly definable categories , J. Algebra 201(2) (1998), 456492.
[23] Krause, H., Decomposing thick subcategories of the stable module category , Math. Ann. 313(1) (1999), 95108.
[24] Krause, H., Smashing subcategories and the telescope conjecture—an algebraic approach , Invent. Math. 139(1) (2000), 99133.
[25] Krause, H. and Reichenbach, U., Endofiniteness in stable homotopy theory , Trans. Amer. Math. Soc. 353(1) (2001), 157173; electronic.
[26] Krause, H., Report on locally finite triangulated categories , J. K-Theory 9(3) (2012), 421458.
[27] Neeman, A., Triangulated Categories, Ann. of Math. Stud. 148 , Princeton University Press, Princeton, NJ, 2001.
[28] Prest, M., Purity, Spectra and Localisation, Encyclopedia of Mathematics and its Applications 121 , Cambridge University Press, Cambridge, 2009.
[29] Reiten, I. and Van den Bergh, M., Noetherian hereditary abelian categories satisfying Serre duality , J. Amer. Math. Soc. 15(2) (2002), 295366; electronic.
[30] Thomason, R. W., The classification of triangulated subcategories , Compositio Math. 105(1) (1997), 127.
[31] Verdier, J.-L., Des catégories dérivées des catégories abéliennes , Astérisque 239 (1996), xii+253 pp. (1997).
[32] Vossieck, D., The algebras with discrete derived category , J. Algebra 243(1) (2001), 168176.
[33] Webb, P., Consequences of the existence of Auslander–Reiten triangles with applications to perfect complexes for self-injective algebras, preprint, 2013,arXiv:1301.4701.
[34] Ziegler, M., Model theory of modules , Ann. Pure Appl. Logic 26(2) (1984), 149213.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed