Skip to main content
×
×
Home

DUALITY FOR COHOMOLOGY OF CURVES WITH COEFFICIENTS IN ABELIAN VARIETIES

  • TAKASHI SUZUKI (a1)
Abstract

In this paper, we formulate and prove a duality for cohomology of curves over perfect fields of positive characteristic with coefficients in Néron models of abelian varieties. This is a global function field version of the author’s previous work on local duality and Grothendieck’s duality conjecture. It generalizes the perfectness of the Cassels–Tate pairing in the finite base field case. The proof uses the local duality mentioned above, Artin–Milne’s global finite flat duality, the nondegeneracy of the height pairing and finiteness of crystalline cohomology. All these ingredients are organized under the formalism of the rational étale site developed earlier.

Copyright
Footnotes
Hide All

The author is a Research Fellow of Japan Society for the Promotion of Science.

Footnotes
References
Hide All
[AGV72] Théorie des topos et cohomologie étale des schémas. Tome 1: Théorie des topos, Lecture Notes in Mathematics 269, Springer, Berlin, 1972; Séminaire de Géométrie Algébrique du Bois-Marie 1963–1964 (SGA 4), Dirigé par M. Artin, A. Grothendieck, et J. L. Verdier. Avec la collaboration de N. Bourbaki, P. Deligne et B. Saint-Donat.
[AGV73] Théorie des topos et cohomologie étale des schémas. Tome 3, Lecture Notes in Mathematics 305, Springer, New York, 1973; Séminaire de Géométrie Algébrique du Bois-Marie 1963–1964 (SGA 4), Dirigé par M. Artin, A. Grothendieck et J. L. Verdier. Avec la collaboration de P. Deligne et B. Saint-Donat.
[AM76] Artin, M. and Milne., J. S., Duality in the flat cohomology of curves , Invent. Math. 35 (1976), 111129.
[Art62] Artin, M., Grothendieck Topologies, Harvard University, Cambridge, Mass, 1962, 133pp.
[Art74] Artin, M., Supersingular K3 surfaces. , Ann. Sci. Éc. Norm. Supér. (4) 7 (1974), 543567.
[Bég81] Bégueri, L., Dualité sur un corps local à corps résiduel algébriquement clos , Mém. Soc. Math. Fr. (N.S.) No. 4 (1980/81), 121pp.
[Bes78] Bester, M., Local flat duality of abelian varieties , Math. Ann. 235(2) (1978), 149174.
[BLR90] Bosch, S., Lütkebohmert, W. and Raynaud, M., Néron Models, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)] 21 , Springer, Berlin, 1990.
[BM76] Bombieri, E. and Mumford, D., Enriques’ classification of surfaces in char. p. III , Invent. Math. 35 (1976), 197232.
[BS15] Bhatt, B. and Scholze, P., The pro-étale topology for schemes , Astérisque No. 369 (2015), 99201.
[Čes15] Česnavičius, K., Topology on cohomology of local fields , Forum Math. Sigma 3 (2015), e16 55.
[Con06] Conrad, B., Chow’s K/k-image and K/k-trace, and the Lang–Néron theorem , Enseign. Math. (2) 52(1–2) (2006), 37108.
[DG70] Demazure, M. and Gabriel, P., Groupes algébriques. Tome I: Géométrie algébrique, généralités, groupes commutatifs, North-Holland Publishing Co., Amsterdam, Masson & Cie, Éditeur, Paris, 1970, Avec un appendice Corps de classes local par Michiel Hazewinkel.
[DH18] Demarche, C. and Harari, D., Artin–Mazur–Milne duality for fppf cohomology, preprint, 2018, arXiv:1804.03941v2.
[Gro66] Grothendieck, A., Éléments de géométrie algébrique (rédigé avec la collaboration de Jean Dieudonné). IV. Étude locale des schémas et des morphismes de schémas. III , Publ. Math. Inst. Hautes Études Sci. No. 28 (1966), 255pp.
[Gro72] Groupes de monodromie en géométrie algébrique. I., Lecture Notes in Mathematics 288, Springer, New York, 1972, Séminaire de Géométrie Algébrique du Bois-Marie 1967–1969 (SGA 7 I), Dirigé par A. Grothendieck. Avec la collaboration de M. Raynaud et D. S. Rim.
[Gro95] Grothendieck, A., “ Techniques de construction et théorèmes d’existence en géométrie algébrique. IV. Les schémas de Hilbert ”, in Séminaire Bourbaki, Vol. 6, Mathematical Society of France, Paris, 1995, 249276, Exp. No. 221.
[HOMNS11] O’Connor, L. H., McGuire, G., Naehrig, M. and Streng, M., A CM construction for curves of genus 2 with p-rank 1 , J. Number Theory 131(5) (2011), 920935.
[Ill79] Illusie, L., Complexe de de Rham-Witt et cohomologie cristalline , Ann. Sci. Éc. Norm. Supér. (4) 12(4) (1979), 501661.
[Kat99] Katz, N. M., Space filling curves over finite fields , Math. Res. Lett. 6(5–6) (1999), 613624.
[KS06] Kashiwara, M. and Schapira, P., Categories and Sheaves, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 332 , Springer, New York, 2006.
[KT03] Kato, K. and Trihan, F., On the conjectures of Birch and Swinnerton–Dyer in characteristic p > 0 , Invent. Math. 153(3) (2003), 537592.
[Kün98] Künnemann, K., Projective regular models for abelian varieties, semistable reduction, and the height pairing , Duke Math. J. 95(1) (1998), 161212.
[Lan83] Lang, S., Abelian Varieties, Springer, New York, 1983; Reprint of the 1959 original.
[Lip78] Lipman, J., Desingularization of two-dimensional schemes , Ann. Math. (2) 107(1) (1978), 151207.
[MB85] Moret-Bailly, L., Pinceaux de variétés abéliennes , Astérisque No. 129 (1985), 266pp.
[Mil76] Milne, J. S., Duality in the flat cohomology of a surface , Ann. Sci. Éc. Norm. Supér. (4) 9(2) (1976), 171201.
[Mil80] Milne, J. S., Étale Cohomology, Princeton Mathematical Series 33 , Princeton University Press, Princeton, NJ, 1980.
[Mil06] Milne, J. S., Arithmetic Duality Theorems, 2nd ed. BookSurge, LLC, Charleston, SC, 2006.
[MR15] Milne, J. S. and Ramachandran, N., The p-cohomology of algebraic varieties and special values of zeta functions , J. Inst. Math. Jussieu 14(4) (2015), 801835.
[Nee01] Neeman, A., Triangulated Categories, Annals of Mathematics Studies 148 , Princeton University Press, Princeton, NJ, 2001.
[Oor66] Oort, F., Commutative Group Schemes, Lecture Notes in Mathematics 15 , Springer, New York, 1966.
[Pro99] Prosmans, F., Derived limits in quasi-abelian categories , Bull. Soc. Roy. Sci. Liège 68(5–6) (1999), 335401.
[Ray70a] Raynaud, M., Spécialisation du foncteur de Picard , Publ. Math. Inst. Hautes Études Sci. No. 38 (1970), 2776.
[Ray70b] Raynaud, M., Anneaux locaux henséliens, Lecture Notes in Mathematics 169 , Springer, New York, 1970.
[Ray95] Raynaud, M., “ Caractéristique d’Euler-Poincaré d’un faisceau et cohomologie des variétés abéliennes ”, in Séminaire Bourbaki, Vol. 9, Soc. Math. France, Paris, 1995, 129147, Exp. No. 286.
[Roo06] Roos, J.-E., Derived functors of inverse limits revisited , J. Lond. Math. Soc. (2) 73(1) (2006), 6583.
[Sch17] Schnürer, O. M., Six operations on dg enhancements of derived categories of sheaves, preprint, 2017, arXiv:1507.08697v3.
[Ser60] Serre, J.-P., Groupes proalgébriques , Publ. Math. Inst. Hautes Études Sci. 7 (1960), 67pp.
[Spa88] Spaltenstein, N., Resolutions of unbounded complexes , Compos. Math. 65(2) (1988), 121154.
[Sta18]The Stacks Project Authors. Stacks Project. http://stacks.math.columbia.edu, 2018.
[Suz13] Suzuki, T., Duality for local fields and sheaves on the category of fields, preprint, 2013, arXiv:1310.4941v5.
[Suz14] Suzuki, T., Grothendieck’s pairing on Néron component groups: Galois descent from the semistable case, accepted, preprint, 2014, arXiv:1410.3046v4.
[Suz18] Suzuki, T., Néron models of 1-motives and duality, preprint, 2018, arXiv:1806.07641v2.
[TV17] Trihan, F. and Vauclair, D., On the non commutative Iwasawa main conjecture for abelian varieties over function fields, preprint, 2017, arXiv:1702.04620v1.
[Vve78] Vvedenskiĭ, O. N., Pairings in elliptic curves over global fields , Izv. Akad. Nauk SSSR Ser. Mat. 42 (1978), 237260; 469.
[Vve81] Vvedenskiĭ, O. N., The Artin effect in abelian varieties. II , Izv. Akad. Nauk SSSR Ser. Mat. 45 (1981), 2346; 239.
[Yui86] Yui, N., The arithmetic of the product of two algebraic curves over a finite field , J. Algebra 98(1) (1986), 102142.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Nagoya Mathematical Journal
  • ISSN: 0027-7630
  • EISSN: 2152-6842
  • URL: /core/journals/nagoya-mathematical-journal
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed