[1]
Bhatt, B., Schwede, K. and Takagi, S.,
*The weak ordinarity conjecture and **F*-singularities
, Adv. Stud. Pure Math. (Kawamata’s 60th volume) (to appear).

[2]
Blickle, M. and Böckle, G.,
*Cartier modules: finiteness results*
, J. Reine Angew. Math.
661 (2011), 85–123.

[3]
Brodmann, M. and Sharp, R. Y., Local Cohomology: An Algebraic Introduction with Geometric Applications, Vol. 60, Cambridge University Press, Cambridge, 1998.

[4]
Cuong, N. T., Morales, M. and Nhan, L. T.,
*The finiteness of certain sets of attached prime ideals and the length of generalized fractions*
, J. Pure Appl. Algebra
189 (2004), 109–121.

[5]
Enescu, F. and Hochster, M.,
*The Frobenius structure of local cohomology*
, Algebra Number Theory
2 (2008), 721–754.

[6]
Fedder, R.,
*
**F*-purity and rational singularity
, Trans. Amer. Math. Soc.
278 (1983), 461–480.

[7]
Gabber, O., Notes on Some *t*-Structures, Geometric Aspects of Dwork Theory **II**
, 711–734. Walter de Gruyter GmbH & Co, KG, Berlin, 2004.

[8]
Hochster, M.,
*Cyclic purity versus purity in excellent Noetherian rings*
, Trans. Amer. Math. Soc.
231 (1977), 463–488.

[9]
Hochster, M. and Huneke, C.,
*Tight closure, invariant theory, and the Briançon–Skoda theorem*
, J. Amer. Math. Soc.
3 (1990), 31–116.

[10]
Hochster, M. and Huneke, C., “
*Indecomposable canonical modules and connectedness*
”, in Commutative Algebra: Syzygies, Multiplicities and Birational Algebra, Contemporary Mathematics **159**
, 1994, 197–208.

[11]
Horiuchi, J., Miller, L. E. and Shimomoto, K.,
*Deformation of **F*-injectivity and local cohomology
, Indiana Univ. Math. J.
63 (2014), 1139–1157; appendix by Karl Schwede and Anurag K. Singh.

[12]
Hochster, M. and Roberts, J.,
*The purity of the Frobenius and local cohomology*
, Adv. Math.
21 (1976), 117–172.

[13]
Huneke, C., Tight Closure and its Applications, CBMS Lecture Notes in Mathematics **88**
, American Mathematical Society, Providence, 1996.

[14]
Kunz, E.,
*On Noetherian rings of characteristic **p*
, Amer. J. Math.
98(4) (1976), 999–1013.

[15]
Lyubeznik, G.,
*On the vanishing of local cohomology in characteristic **p* > 0
, Compos. Math.
142 (2006), 207–221.

[16]
Ma, L.,
*Finiteness property of local cohomology for **F*-pure local rings
, Int. Math. Res. Not. IMRN
20 (2014), 5489–5509.

[17]
Ma, L.,
*
**F*-injectivity and Buchsbaum singularities
, Math. Ann.
362 (2015), 25–42.

[18]
Ma, L., Schwede, K. and Shimomoto, K., *Local cohomology of Du Bois singularities and applications to families*, preprint, 2014, arXiv:1605.02755. [19]
Matsumura, H., Commutative Ring Theory, Vol. 8, Cambridge University Press, Cambridge, 1986.

[20]
Quy, P. H. and Shimomoto, K.,
*
**F*-injectivity and Frobenius closure of ideals in Noetherian rings of characteristic *p* > 0
, Adv. Math.
313 (2017), 127–166.

[21]
Schwede, K.,
*
**F*-injective singularities are Du Bois
, Amer. J. Math.
131 (2009), 445–473.

[22]
Singh, A. K.,
*Deformation of **F*-purity and *F*-regularity
, J. Pure Appl. Algebra
140 (1999), 137–148.

[23]
Singh, A. K.,
*
**F*-regularity does not deform
, Amer. J. Math.
121 (1999), 919–929.

[24]
Singh, A. K. and Walther, U.,
*Local cohomology and pure morphisms*
, Illinos J. Math.
51 (2007), 287–298.

[25]
Takagi, S. and Watanabe, K.,
*
**F*-singularities: applications of characteristic *p* methods to singularity theory
, Sugaku Exposition (2014).