Skip to main content


  • MORITZ KERZ (a1) and YIGENG ZHAO (a2)

We use higher ideles and duality theorems to develop a universal approach to higher dimensional class field theory.

Hide All

The authors are supported by the DFG through CRC 1085 Higher Invariants (Universität Regensburg).

Hide All
[BK86] Bloch, S. and Kato, K., p-adic etale cohomology , Publ. Math. Inst. Hautes Études Sci. 63 (1986), 107152.
[Del77] Deligne, P., “Cohomologie étale (SGA 4 )”, in Avec la collaboration de J.-F. Boutot, A. Grothendieck, L. Illusie et J.-L. Verdier, Lecture Notes in Mathematics 569, Springer, New York, 1977.
[For15] Forré, P., The kernel of the reciprocity map of varieties over local fields , J. Reine Angew. Math. 2015(698) (2015), 5569.
[Gei04] Geisser, T., Motivic cohomology over Dedekind rings , Math. Z. 248(4) (2004), 773794.
[Gei10] Geisser, T., Duality via cycle complexes , Ann. Math. 172(2) (2010), 10951126.
[GH67] Grothendieck, A. and Hartshorne, R., Local Cohomology: A Seminar, Lecture Notes in Mathematics 41 , Springer, New York, 1967.
[GL00] Geisser, T. and Levine, M., The K-theory of fields in characteristic p , Invent. Math. 139(3) (2000), 459493.
[GL01] Geisser, T. and Levine, M., The Bloch–Kato conjecture and a theorem of Suslin–Voevodsky , J. Reine Angew. Math. 530 (2001), 55104.
[GS88] Gros, M. and Suwa, N., La conjecture de Gersten pour les faisceaux de Hodge–Witt logarithmique , Duke Math. J. 57(2) (1988), 615628.
[Hir16] Hiranouchi, T., Class field theory for open curves over local fields, preprint, 2016, arXiv:1412.6888v2.
[Ill79] Illusie, L., Complexe de de Rham-Witt et cohomologie cristalline , Ann. Sci. Éc. Norm. Supér. (4) 12 (1979), 501661.
[JS03] Jannsen, U. and Saito, S., Kato homology of arithmetic schemes and higher class field theory over local fields , Documenta Math. Extra Volume: Kazuya Kato’s Fiftieth Birthday (2003), 479538.
[JSS14] Jannsen, U., Saito, S. and Sato, K., Étale duality for constructible sheaves on arithmetic schemes , J. Reine Angew. Math. 688 (2014), 165.
[JSZ18] Jannsen, U., Saito, S. and Zhao, Y., Duality for relative logarithmic de Rham–Witt sheaves and wildly ramified class field theory over finite fields , Compos. Math. 154(6) (2018), 13061331.
[KCD08] Kunz, E., Cox, D. and Dickenstein, A., Residues and Duality for Projective Algebraic Varieties, University Lecture Series, 47 , American Mathematical Society, Providence, 2008.
[Ker09] Kerz, M., The Gersten conjecture for Milnor K-theory , Invent. Math. 175(1) (2009), 133.
[Ker11] Kerz, M., Ideles in higher dimension , Math. Res. Lett. 18(4) (2011), 699713.
[KS83] Kato, K. and Saito, S., Unramified class field theory of arithmetical surfaces , Ann. of Math. (2) 118 (1983), 241275.
[KS86] Kato, K. and Saito, S., “ Global class field theory of arithmetic schemes ”, in Applications of Algebraic K-theory to Algebraic Geometry and Number Theory, Part I, American Mathematical Society, Providence, 1986, 255331.
[KS12] Kerz, M. and Saito, S., Cohomological Hasse principle and motivic cohomology for arithmetic schemes , Publ. Math. Inst. Hautes Études Sci. 115(1) (2012), 123183.
[KS16] Kerz, M. and Saito, S., Chow group of 0-cycles with modulus and higher dimensional class field theory , Duke Math. J. 165(15) (2016), 28112897.
[Mat02] Matsumi, P., Class field theory for F q [[X 1, X 2, X 3]] , J. Math. Sci. Univ. Tokyo 9(4) (2002), 689749.
[Mil86] Milne, J. S., Values of zeta functions of varieties over finite fields , Amer. J. Math. 108 (1986), 297360.
[RS18] Rülling, K. and Saito, S., Higher Chow groups with modulus and relative Milnor K-theory , Trans. Amer. Math. Soc. 370 (2018), 9871043.
[Sai85] Saito, S., Class field theory for curves over local fields , J. Number Theory 21(1) (1985), 4480.
[Sai87] Saito, S., Class field theory for two dimensional local rings , Adv. Stud. Pure Math. 12 (1987), 343373.
[Sai89] Saito, S., “ A global duality theorem for varieties over global fields ”, in Algebraic K-Theory: Connections with Geometry and Topology, Kluwer Academic Publisher, Dordrecht, 1989, 425444.
[Sat07] Sato, K., Logarithmic Hodge–Witt sheaves on normal crossing varieties , Math. Z. 257 (2007), 707743.
[Sat09] Sato, K., -adic class field theory for regular local rings , Math. Ann. 344(2) (2009), 341352.
[Shi07] Shiho, A., On logarithmic Hodge–Witt cohomology of regular schemes , J. Math. Sci. Univ. Tokyo 14 (2007), 567635.
[Zha16] Zhao, Y., Duality for relative logarithmic de Rham–Witt sheaves on semistable schemes over , preprint, 2016, arXiv:1611.08722.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Nagoya Mathematical Journal
  • ISSN: 0027-7630
  • EISSN: 2152-6842
  • URL: /core/journals/nagoya-mathematical-journal
Please enter your name
Please enter a valid email address
Who would you like to send this to? *

MSC classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed