[1]
Asadollahi, J. and Schenzel, P.,
*Some results on associated primes of local cohomology modules*
, Jpn. J. Math.
29 (2003), 285–296.

[2]
Bahmanpour, K. and Quy, P. H.,
*Localization at countably infinitely many prime ideals and applications*
, J. Algebra Appl.
15 (2016), 1650045 (6pages).

[3]
Bhatt, B., Blickle, M., Lyubeznik, G., Singh, A. and Zhang, W.,
*Local cohomology modules of a smooth ℤ-algebra have finitely many associated primes*
, Invent. Math.
197 (2014), 509–519.

[4]
Brodmann, M. and Faghani, A. L.,
*A finiteness result for associated primes of local cohomology modules*
, Proc. Amer. Math. Soc.
128 (2000), 2851–2853.

[5]
Brodmann, M. and Sharp, R. Y., Local Cohomology: An Algebraic Introduction with Geometric Applications, Cambridge University Press, Cambridge, 1998.

[6]
Hochster, M. and Núñez-Betancourt, L.,
*Support of local cohomology modules over hypersurfaces and rings with FFRT*
, Math. Res. Lett.
24 (2017), 401–420.

[7]
Huneke, C., “
*Problems on local cohomology*
”, in Free Resolutions in Commutative Algebra and Algebraic Geometry (Sundance, UT, 1990), Res. Notes Math. **2**
, Jones and Bartlett, Boston, MA, 1992, 93–108.

[8]
Huneke, C., Katz, D. and Marley, T.,
*On the support of local cohomology*
, J. Algebra
322 (2009), 3194–3211.

[9]
Huneke, C. and Sharp, R. Y.,
*Bass numbers of local cohomology modules*
, Trans. Amer. Math. Soc.
339 (1993), 765–779.

[10]
Katzman, M.,
*An example of an infinite set of associated primes of a local cohomology module*
, J. Algebra
252 (2002), 161–166.

[11]
Kunz, E.,
*Characterization of regular local rings for characteristic **p*
, Amer. J. Math.
91 (1969), 772–784.

[12]
Lyubeznik, G.,
*Finiteness properties of local cohomology modules (an application of **D*-modules to commutative algebra)
, Invent. Math.
113 (1993), 41–55.

[13]
Lyubeznik, G.,
*
**F*-modules: applications to local cohomology and *D*-modules in characteristic *p* > 0
, J. Reine Angew. Math.
491 (1997), 65–130.

[14]
Marley, T.,
*The associated primes of local cohomology modules over rings of small dimension*
, Manuscripta Math.
104 (2001), 519–525.

[15]
Nagel, U. and Schenzel, P., “
*Cohomological annihilators and Castelnuovo–Mumford regularity*
”, in Commutative Algebra: Syzygies, Multiplicities, and Birational Algebra, Contemp. Math. **159**
, Amer. Math. Soc., Providence, RI, 1994, 307–328.

[16]
Núñez-Betancourt, L.,
*Local cohomology properties of direct summands*
, J. Pure Appl. Algebra
216 (2012), 2137–2140.

[17]
Patakfalvi, Z. and Schwede, K.,
*Depth of **F*-singularities and base change of relative canonical sheaves
, J. Inst. Math. Jussieu
13(1) (2014), 43–63.

[18]
Quy, P. H.,
*A remark on the finiteness dimension*
, Comm. Algebra
41 (2014), 2048–2054.

[19]
Quy, P. H. and Shimomoto, K.,
*
**F*-injectivity and Frobenius closure of ideals in Noetherian rings of characteristic *p* > 0
, Adv. Math.
313 (2017), 127–166.

[20]
Singh, A. K.,
*
**p*-torsion elements in local cohomology modules
, Math. Res. Lett.
7 (2000), 165–176.

[21]
Singh, A. K. and Swanson, I.,
*Associated primes of local cohomology modules and of Frobenius powers*
, Int. Math. Res. Not. IMRN
33 (2004), 1703–1733.

[22]
Smith, K. E. and Van den Bergh, M.,
*Simplicity of rings of differential operators in prime characteristic*
, Proc. Lond. Math. Soc. (3)
75 (1997), 32–62.

[23]
Takagi, S. and Takahashi, R.,
*
**D*-modules over rings with finite *F*-representation type
, Math. Res. Lett.
15 (2008), 563–581.

[24]
Yao, Y.,
*Modules with finite **F*-representation type
, J. Lond. Math. Soc. (2)
72 (2005), 53–72.