[1]Atiyah, M., Bott, R. and Patodi, V. K., *On the heat equation and the index theorem*, Invent. Math. 19 (1973), 279–330.

[2]Baha Balantekin, A. and Bars, I., *Representations of supergroups*, J. Math. Phys. 22(8) (1981), 1810–1818.

[3]Berele, A., *Invariant theory for matrices over the Grassmann algebra*, Adv. Math. 237 (2013), 33–61.

[4]Berele, A. and Regev, A., *Hook Young diagrams with applications to combinatorics and to representations of Lie superalgebras*, Adv. Math. 64 (1987), 118–175.

[5]Deligne, P. and Morgan, J. W., “*Notes on supersymmetry (following Joseph Bernstein)*”, in Quantum Fields and Strings: A Course for Mathematicians, Vol. 1, 2 (Princeton, NJ, 1996/1997), American Mathematical Society, Providence, RI, 1999, 41–97.

[6]Deligne, P., Lehrer, G. I. and Zhang, R. B., *The first fundamental theorem of invariant theory for the orthosymplectic super group*, Adv. Math. 327 (2018), 4–24.

[7]Ehrig, M. and Stroppel, C., *Schur–Weyl duality for the Brauer algebra and the ortho-symplectic Lie superalgebra*, Math. Z. 284(1–2) (2016), 595–613.

[8]Dondi, P. H. and Jarvis, P. D., *Diagram and superfield techniques in the classical superalgebras*, J. Phys. A 14(3) (1981), 547–563.

[9]Goodman, R. and Wallach, N. R., Representations and Invariants of the Classical Groups, Cambridge University Press, Cambridge, 2003, third corrected printing.

[10]Graham, J. J. and Lehrer, G. I., *Cellular algebras*, Invent. Math. 123 (1996), 1–34.

[11]Graham, J. J. and Lehrer, G. I., *The representation theory of affine Temperley–Lieb algebras*, Enseign. Math. (2) 44(3–4) (1998), 173–218.

[12]Graham, J. J. and Lehrer, G. I., *Diagram algebras, Hecke algebras and decomposition numbers at roots of unity*, Ann. Sci. Éc. Norm. Supér. (4) 36 (2003), 479–524.

[13]Graham, J. J. and Lehrer, G. I., “*Cellular algebras and diagram algebras in representation theory*”, Representation Theory of Algebraic Groups and Quantum Groups, Advance Studies in Pure Mathematics **40**, 141–173. Math. Soc. Japan, Tokyo, 2004.

[14]Kac, V., *Lie superalgebras*, Adv. Math. 26(1) (1977), 8–96.

[15]Lehrer, G. I. and Zhang, R. B., *Strongly multiplicity free modules for Lie algebras and quantum groups*, J. Algebra 306 (2006), 138–174.

[16]Lehrer, G. I. and Zhang, R. B., “*A Temperley–Lieb analogue for the BMW algebra*”, in Representation Theory of Algebraic Groups and Quantum Groups, Progress in Mathematics **284**, Birkhäuser/Springer, New York, 2010, 155–190.

[17]Lehrer, G. I. and Zhang, R. B., *The second fundamental theorem of invariant theory for the orthogonal group*, Ann. of Math. (2) 176 (2012), 2031–2054.

[18]Lehrer, G. I. and Zhang, R. B., *The Brauer category and invariant theory*, J. Eur. Math. Soc. 17 (2015), 2311–2351.

[19]Lehrer, G. I. and Zhang, R. B., *The first fundamental theorem of invariant theory for the orthosymplectic supergroup*, Comm. Math. Phys. 349 (2017), 661–702.

[20]Lehrer, G. I., Zhang, H. and Zhang, R. B., *A quantum analogue of the first fundamental theorem of invariant theory*, Comm. Math. Phys. 301 (2011), 131–174.

[21]Procesi, C., Lie Groups. An Approach through Invariants and Representations, Universitext, Springer, New York, 2007, xxiv+596 pp.

[22]Salam, A. and Strathdee, J., *Super-gauge transformations*, Nuclear Phys. B76 (1974), 477–482.

[23]Scheunert, M., The Theory of Lie Superalgebras; An Introduction, Lecture Notes in Mathematics **716**, Springer, Berlin–Heidelberg–New York, 1979.

[24]Scheunert, M. and Zhang, R. B., *The general linear supergroup and its Hopf superalgebra of regular functions*, J. Algebra 254(1) (2002), 44–83.

[25]Sergeev, A., *An analogue of the classical theory of invariants for Lie superalgebras*, Funktsional. Anal. i Prilozhen. 26(3) (1992), 88–90; (Russian) translation in Funct. Anal. Appl. **26**(3) (1992), 223–225.

[26]Sergeev, A., *An analog of the classical invariant theory for Lie superalgebras. I, II*, Michigan Math. J. 49(1) (2001), 113–146; 147–168.

[27]Varadarajan, V. S., Supersymmetry for Mathematicians: An Introduction, Courant Lecture Notes in Mathematics **11**, New York University, Courant Institute of Mathematical Sciences, New York, 2004, American Mathematical Society, Providence, RI.

[28]De Witt, B., “*Supermanifolds*”, in Cambridge Monographs on Mathematical Physics, 2nd ed., Cambridge University Press, Cambridge, 1992.

[29]Zhang, Y., *On the second fundamental theorem of invariant theory for the orthosymplectic supergroup*, J. Algebra 501 (2018), 394–434.