[1]
Bacuta C., Vassilevski P. and Zhang S., A new approach for solving Stokes systems arising from a distributive relaxation method, Numer. Methods Partial Differ. Equ., 27 (2011), pp. 898–914.

[2]
Benzi M., G. H. , Golub and Liesen J., Numerical solution of saddle point problems, Acta Numerica, 14 (2005), pp. 1–137.

[3]
Borzì A. and Schulz V., Multigrid methods for PDE optimization, SIAM Review, 51 (2009), pp. 361–395.

[4]
Brandt A., Multi-level adaptive solutions to boundary-value problems, Math. Comp.
31 (1977), pp. 333–390.

[5]
Brandt A. and Dinar N., Multigrid solutions to elliptic flow problems, in Parter S. V. (ed.), Numerical Methods for PDEs, Academic Press, New York, 1979, pp. 53–147.

[6]
Butt M. M., *A multigrid solver for stokes control problems*, Int. J. Comput. Math.

[7]
Butt M. M. and Borzì A., Formulation and multigrid solution of Cauchy-Riemann optimal control problems, Computing and Visualization in Science, 14 (2011), pp. 79–90.

[8]
Dendy J. E. Jr and Moulton J. D., Black Box Multigrid with coarsening by a factor of three, Numer. Linear Algebra Appl., 17 (2010), pp. 577–598.

[9]
Drgnescu A. and Soane A. M., Multigrid solution of a distributed optimal control problem constrained by the Stokes equations, Appl. Math. Comput., 219 (2013), pp. 5622–5634.

[10]
Evans L.C., Partial Differential Equations, Graduate Studies in Mathematics, American Mathematical Society, 128(1-2) (2002), pp. 55–82.

[11]
Girault V. and Raviart P. A., Finite Element Methods for NavierâĂŞStokes Equations: Theory and Algorithms, Springer Series in Computational Mathematics, Springer-Verlag, Berlin, 5 (1986).

[12]
Kellogg R. B. and Osborn J. E., A regularity result for the Stokes problem in a convex polygon, J. Funct. Anal., 21 (1976), pp. 397–431.

[13]
Hackbusch W., Multi-grid Methods and Applications, Springer-Verlag, 960(4) (1985), pp. 558–575.

[14]
Hackbusch W., Elliptic Differential Equations, Springer, New York, 1992.

[15]
Ito K. and Kunisch K., Lagrange Multiplier Approach to Variational Problems and Applications, SIAM, 2008.

[16]
Kollmann M. and Zulehner W., A Robust Preconditioner for Distributed Optimal Control for Stokes Flow with Control Constraints, In Cangiani Andrea, Davidchack Ruslan L., Numerical Mathematics and Advanced Applications 2011, Springer Berlin Heidelberg, (2013), pp. 771–779.

[17]
Lions J. L., Optimal Control of Systems Governed by Partial Differential Equations, Springer, Berlin, 1971.

[18]
Oosterlee C. W. and Gaspar F. J., Multigrid methods for the stokes system, Comput. Sci. Eng., 8 (2006), pp. 34–43.

[19]
Takacs S., A robust all-at-once multigrid method for the Stokes control problem, Numerische Mathematik, 130 (2015), pp. 517–540

[20]
Tröltzsch F., Optimal control of partial differential equations: theory, methods and applications, AMS, 2010.

[21]
Trottenberg U., Oosterlee C. and Schüller A., Multigrid, Academic Press, London, 2001.

[22]
Wang M. and Chen L., Multigrid methods for the stokes equations using distributive Gauss–seidel relaxations based on the least squares commutator, J. Sci. Comput.
56 (2013), pp. 409–431.

[23]
Wittum G., Multi-grid methods for Stokes and Navier-Stokes equations, Numerische Mathematik, 54 (1989), pp. 543–563.