[1]
Ahdersson, D. and Djehiche, B., A maximum principle for SDEs of mean-field type, Appl. Math. Opt., 63 (2011), pp. 341–356.

[2]
Bardi, M. and Capuzzo, D., Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations, Birkhauser, 7(10) (1997), pp. S237–S244(8).

[3]
Bossy, M. and Talay, D., A stochastic particle method for the McKean-Vlasov and the Burgers equation, Math. Comput., 1997 (66), pp. 157–192.

[4]
Buckdahn, R., Djehiche, B., Li, J. and Peng, S., Mean-field backward stochastic differential equations: a limit approach, Ann. Probab., 2009 (37), pp. 1524–1565.

[5]
Buckdahn, R., Li, J. and Peng, S., Mean-field backward stochastic differential equations and related partial differential equations, Stochastic Pro. Appl., 2009 (119), pp. 3133–3154.

[6]
Feng, S., Large deviations for Markov processes with mean-field interaction and unbounded jumps., Probab. Theory Related Fields, 1994 (100), pp. 227–252.

[7]
Fu, Y., Zhao, W., and Zhou, T., Multistep schemes for forward backward stochastic differential equations with jumps, J. Sci. Comput., 69 (2016), pp. 1–22.

[8]
Fu, Y., Zhao, W., and Zhou, T., Efficient spectral sparse grid approximations for solving multidimensional forward backward SDEs, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), pp. 3439–3458.

[9]
Guéant, O., Lasry, J. and Lions, P., Mean-field games and applications, Paris-Princeton lectures on mathematical finance 2010, Springer-Verlag Berlin, 2003, pp. 205–266.

[10]
Hafayed, M., A mean-field necessary and sufficient conditions for optimal singular stochastic control, Commun. Math. Stat., 1(4) (2013), pp. 417–435.

[11]
Kloeden, P. and Platen, E., Numerical Solution of Stochastic Differential Equations, Springer-Verlag, Berlin, 1992.

[12]
Kong, T., Zhao, W., and Zhou, T., Probabilistic high order numerical schemes for fully nonlinear parabolic PDEs, Commun. Comput. Phys., 18 (2015), pp. 1482–1503.

[13]
Kotelenez, P., A class of quasilinear stochastic partial differential equations of McKean-Vlasov type with mass conservation, Probab. Theory Related Fields, 1995 (102), pp. 159–188.

[14]
Lasry, J. and Lions, P., Mean-field games, Japan J. Math., 2007 (2), pp. 229–260.

[15]
Léonard, C., Une loi des grands nombres pour des systèmes de diffusions avec interaction et à coefficients non bornés, Annales de l'IHP Probabilités et statistiques, 22(2) (1986), pp. 237–262.

[16]
Li, J., Stochastic maximum principle in the mean-field controls, Automatica, 48(2) (2012), pp. 366–373.

[17]
McKean, H., Propagation of chaos for a class of non-linear parabolic equations, in Lecture Series in Differential Equations, Catholic University, 1967, pp. 41–57.

[18]
Méléard, S., Asymptotic behaviour of some interacting particle systems; McKean-Vlasov and Boltzmann models in probabilistic models for nonlinear partial differential equations, Springer-Verlag, Berlin, 1996, pp. 42–95.

[19]
Mendoza, M., Aguilar, M. and Valle, F., A mean-field approach that combines quantum mechanics and molecular dynamics simulation: the water molecule in liquid water, J. Mol. Struct., 1998 (426), pp. 181–190.

[20]
Milstein, G. and Tretyakov, M., Stochastic Numerics for Mathematical Physics, Springer-Verlag, Berlin, 2004.

[21]
Ni, Y., Li, X. and Zhang, J., Mean-field stochastic linear-quadratic optimal control with Markov jump parameters, Syst. Control Lett., 93 (2016), pp. 69–76.

[22]
Øksendal, B., Stochastic Differential Equations, Springer-Verlag, Berlin, 2003.

[23]
Stevenson, P., Stone, J. and Strayer, M., *Hartree-Fock mean-field models using separable interactions*, Office of Scientific & Technical Information Technical Reports, 217 (1999), U8.

[24]
Sznitmann, AS., A fluctuation result for nonlinear diffusions, Pitman Research Notes in Math, 124 (1985), pp. 145–160.

[25]
Talay, D. and Vaillant, O., A stochastic particle method with random weights for the computation of statistical solutions of McKean-Vlasov equations, Ann. Appl. Probab, 13 (2003), pp. 140–180.

[26]
Tanaka, H., Limit theorems for certain diffusion processes with interaction, North-Holland Mathematical Library, 32 (1984), pp. 469–488.

[27]
Tang, T., Zhao, W., and Zhou, T., Deferred correction methods for forward backward stochastic differential equations, Numer. Math. Theor. Meth. Appl., 10 (2017), pp. 222–242.

[28]
Wang, B. and Zhang, J., mean-field games for large population multi-agent systems with Markov jump parameters, SIAM J. Control Optim., 50 (2012), pp. 2308–2334.

[29]
Wang, G., Zhang, C. and Zhang, W., Stochastic maximum principle for mean-field type optimal control under partial information, IEEE T. Automat. Contr., 59(2) (2014), pp. 522–528.

[30]
Yang, J. and Zhao, W., Convergence of recent multistep schemes for a forward-backward stochastic differential equation, East Asian J. Appl. Math., 5 (2015), pp. 387–404.

[31]
Zhao, W., Chen, L., and Peng, S., A new kind of accurate numerical method for backward stochastic differential equations, SIAM J. Sci. Comput., 28 (2006), pp. 1563–1581.

[32]
Zhao, W., Fu, Y., and Zhou, T., New kinds of high-order multistep schemes for coupled forward backward stochastic differential equations, SIAM J. Sci. Comput., 36 (2014), pp. A1731–A1751.

[33]
Zhao, W., Li, Y., and Fu, Y., Second-order schemes for solving decoupled forward backward stochastic differential equations, Sci. China Math., 57 (2014), pp. 665–686.

[34]
Zhao, W., Tao, Z., and Tao, K., High order numerical schemes for second-order FBSDEs with applications to stochastic optimal control, Commun. Comput. Phys., 21 (2017), pp. 808–834.

[35]
Zhao, W., Wang, J., and Peng, S., Error estimates of the θ-scheme for backward stochastic differential equations, Discrete Contin. Dyn. Syst. Ser. B, 12 (2009), pp. 905–924.

[36]
Zhao, W., Zhang, G., and Ju, L., A stable multistep scheme for solving backward stochastic differential equations, SIAM J. Numer. Anal., 48 (2010), pp. 1369–1394.

[37]
Zhao, W., Zhang, W., and Ju, L., A numerical method and its error estimates for the decoupled forward-backward stochastic differential equations, Commun. Comput. Phys., 15 (2014), pp. 618–646.

[38]
Zhao, W., Zhang, W., and Ju, L., A multistep scheme for decoupled forward-backward stochastic differential equations, Numer. Math. Theor. Meth. Appl., 9 (2016), pp. 262–288.