[1]
Ahdersson D. and Djehiche B., A maximum principle for SDEs of mean-field type, Appl. Math. Opt., 63 (2011), pp. 341–356.

[2]
Bardi M. and Capuzzo D., Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations, Birkhauser, 7(10) (1997), pp. S237–S244(8).

[3]
Bossy M. and Talay D., A stochastic particle method for the McKean-Vlasov and the Burgers equation, Math. Comput., 1997 (66), pp. 157–192.

[4]
Buckdahn R., Djehiche B., Li J. and Peng S., Mean-field backward stochastic differential equations: a limit approach, Ann. Probab., 2009 (37), pp. 1524–1565.

[5]
Buckdahn R., Li J. and Peng S., Mean-field backward stochastic differential equations and related partial differential equations, Stochastic Pro. Appl., 2009 (119), pp. 3133–3154.

[6]
Feng S., Large deviations for Markov processes with mean-field interaction and unbounded jumps., Probab. Theory Related Fields, 1994 (100), pp. 227–252.

[7]
Fu Y., Zhao W., and Zhou T., Multistep schemes for forward backward stochastic differential equations with jumps, J. Sci. Comput., 69 (2016), pp. 1–22.

[8]
Fu Y., Zhao W., and Zhou T., Efficient spectral sparse grid approximations for solving multidimensional forward backward SDEs, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), pp. 3439–3458.

[9]
Guéant O., Lasry J. and Lions P., Mean-field games and applications, Paris-Princeton lectures on mathematical finance 2010, Springer-Verlag Berlin, 2003, pp. 205–266.

[10]
Hafayed M., A mean-field necessary and sufficient conditions for optimal singular stochastic control, Commun. Math. Stat., 1(4) (2013), pp. 417–435.

[11]
Kloeden P. and Platen E., Numerical Solution of Stochastic Differential Equations, Springer-Verlag, Berlin, 1992.

[12]
Kong T., Zhao W., and Zhou T., Probabilistic high order numerical schemes for fully nonlinear parabolic PDEs, Commun. Comput. Phys., 18 (2015), pp. 1482–1503.

[13]
Kotelenez P., A class of quasilinear stochastic partial differential equations of McKean-Vlasov type with mass conservation, Probab. Theory Related Fields, 1995 (102), pp. 159–188.

[14]
Lasry J. and Lions P., Mean-field games, Japan J. Math., 2007 (2), pp. 229–260.

[15]
Léonard C., Une loi des grands nombres pour des systèmes de diffusions avec interaction et à coefficients non bornés, Annales de l'IHP Probabilités et statistiques, 22(2) (1986), pp. 237–262.

[16]
Li J., Stochastic maximum principle in the mean-field controls, Automatica, 48(2) (2012), pp. 366–373.

[17]
McKean H., Propagation of chaos for a class of non-linear parabolic equations, in Lecture Series in Differential Equations, Catholic University, 1967, pp. 41–57.

[18]
Méléard S., Asymptotic behaviour of some interacting particle systems; McKean-Vlasov and Boltzmann models in probabilistic models for nonlinear partial differential equations, Springer-Verlag, Berlin, 1996, pp. 42–95.

[19]
Mendoza M., Aguilar M. and Valle F., A mean-field approach that combines quantum mechanics and molecular dynamics simulation: the water molecule in liquid water, J. Mol. Struct., 1998 (426), pp. 181–190.

[20]
Milstein G. and Tretyakov M., Stochastic Numerics for Mathematical Physics, Springer-Verlag, Berlin, 2004.

[21]
Ni Y., Li X. and Zhang J., Mean-field stochastic linear-quadratic optimal control with Markov jump parameters, Syst. Control Lett., 93 (2016), pp. 69–76.

[22]
Øksendal B., Stochastic Differential Equations, Springer-Verlag, Berlin, 2003.

[23]
Stevenson P., Stone J. and Strayer M., *Hartree-Fock mean-field models using separable interactions*, Office of Scientific & Technical Information Technical Reports, 217 (1999), U8.

[24]
Sznitmann AS., A fluctuation result for nonlinear diffusions, Pitman Research Notes in Math, 124 (1985), pp. 145–160.

[25]
Talay D. and Vaillant O., A stochastic particle method with random weights for the computation of statistical solutions of McKean-Vlasov equations, Ann. Appl. Probab, 13 (2003), pp. 140–180.

[26]
Tanaka H., Limit theorems for certain diffusion processes with interaction, North-Holland Mathematical Library, 32 (1984), pp. 469–488.

[27]
Tang T., Zhao W., and Zhou T., Deferred correction methods for forward backward stochastic differential equations, Numer. Math. Theor. Meth. Appl., 10 (2017), pp. 222–242.

[28]
Wang B. and Zhang J., mean-field games for large population multi-agent systems with Markov jump parameters, SIAM J. Control Optim., 50 (2012), pp. 2308–2334.

[29]
Wang G., Zhang C. and Zhang W., Stochastic maximum principle for mean-field type optimal control under partial information, IEEE T. Automat. Contr., 59(2) (2014), pp. 522–528.

[30]
Yang J. and Zhao W., Convergence of recent multistep schemes for a forward-backward stochastic differential equation, East Asian J. Appl. Math., 5 (2015), pp. 387–404.

[31]
Zhao W., Chen L., and Peng S., A new kind of accurate numerical method for backward stochastic differential equations, SIAM J. Sci. Comput., 28 (2006), pp. 1563–1581.

[32]
Zhao W., Fu Y., and Zhou T., New kinds of high-order multistep schemes for coupled forward backward stochastic differential equations, SIAM J. Sci. Comput., 36 (2014), pp. A1731–A1751.

[33]
Zhao W., Li Y., and Fu Y., Second-order schemes for solving decoupled forward backward stochastic differential equations, Sci. China Math., 57 (2014), pp. 665–686.

[34]
Zhao W., Tao Z., and Tao K., High order numerical schemes for second-order FBSDEs with applications to stochastic optimal control, Commun. Comput. Phys., 21 (2017), pp. 808–834.

[35]
Zhao W., Wang J., and Peng S., Error estimates of the θ-scheme for backward stochastic differential equations, Discrete Contin. Dyn. Syst. Ser. B, 12 (2009), pp. 905–924.

[36]
Zhao W., Zhang G., and Ju L., A stable multistep scheme for solving backward stochastic differential equations, SIAM J. Numer. Anal., 48 (2010), pp. 1369–1394.

[37]
Zhao W., Zhang W., and Ju L., A numerical method and its error estimates for the decoupled forward-backward stochastic differential equations, Commun. Comput. Phys., 15 (2014), pp. 618–646.

[38]
Zhao W., Zhang W., and Ju L., A multistep scheme for decoupled forward-backward stochastic differential equations, Numer. Math. Theor. Meth. Appl., 9 (2016), pp. 262–288.