[1]
Alpert, B., A class of bases in L^{2} for the sparse representation of integral operators, SIAM J. Math. Anal., 24 (1993), pp. 246–262.

[2]
Babuska, I., Nobile, F. and Tempone, R., A stochastic collocation method for elliptic partial differential equations with random input data, SIAM J. Numer. Anal., 45 (2007), pp. 1005–1034.

[3]
Babuska, I., Tempone, R. and Zouraris, G. E., Galerkin finite element approximations of stochastic elliptic partial differential equations, SIAM J. Numer. Anal., 42 (2004), pp. 800–825.

[4]
Back, J., Nobile, F., Tamellini, L. and Tempone, R., Stochastic spectral Galerkin and collocation methods for PDEs with random coefficients: a numerical comparison, in Spectral and High Order Methods for Partial Differential Equations, Hesthaven, E. M. R. J. S., ed., Springer-Verlag Berlin Heidelberg, 2011.

[5]
Bird, G. A., Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Clarendon Press, Oxford, 1994.

[6]
Bobylev, A. V., One class of invariant solutions of the Boltzmann equation, Akademiia Nauk SSSR, Doklady, 231 (1976), pp. 571–574.

[7]
Bouchut, F. and Desvillettes, L., A proof of the smoothing properties of the positive part of Boltzmann's kernel, Revista Matemática Iberoamericana, 14 (1998), pp. 47–61.

[8]
Bungartz, H. J. and Griebel, M., Sparse grids, Acta Numerica, 13 (2004), pp. 147–269.

[9]
Cercignani, C., The Boltzmann Equation and Its Applications, Springer-Verlag, New York, 1988.

[10]
Filbet, F. and Jin, S., A class of asymptotic-preserving schemes for kinetic equations and related problems with stiff sources, J. Comput. Phys., 229 (2010), pp. 7625–7648.

[11]
Garcke, J. and Griebel, M., Sparse Grids and Applications, Springer, 2013.

[12]
Ghanem, R. G. and Spanos, P. D., Stochastic Finite Elements: A Spectral Approach, Springer-Verlag, New York, 1991.

[13]
Griebel, M., Adaptive sparse grid multilevel methods for elliptic PDEs based on finite differences, Computing, 61 (1998), pp. 151–179.

[14]
Griebel, M. and Zumbusch, G., Adaptive sparse grids for hyperbolic conservation laws, in Hyperbolic Problems: Theory, Numerics, Applications, Springer, 1999, pp. 411–422.

[15]
Guo, W. and Cheng, Y., *A sparse grid discontinuous Galerkin method for high-dimensional transport equations and its application to kinetic simulations*, SIAM J. Sci. Comput., accepted.

[16]
Hu, J. and Jin, S., A stochastic Galerkin method for the Boltzmann equation with uncertainty, J. Comput. Phys., 315 (2016), pp. 150–168.

[17]
Krook, M. and Wu, T. T., Formation of Maxwellian tails, Phys. Fluids, 20 (1977), pp. 1589–1595.

[18]
Lions, P. L., Compactness in Boltzmann's equation via Fourier integral operators and applications. I, II, Journal of Mathematics of Kyoto University, 34 (1994), pp. 391–427, 429–461.

[19]
Maître, O. P. L. and Knio, O. M., Spectral Methods for Uncertainty Quantification, Scientific Computation, with Applications to Computational Fluid Dynamics, Springer, New York, 2010.

[20]
Maître, O. P. L., Najm, H. N., Ghanem, R. G. and Knio, O. M., Multi-resolution analysis of Wiener-type uncertainty propagation schemes, J. Comput. Phys., 197 (2004), pp. 502–531.

[21]
Mouhot, C. and Pareschi, L., Fast algorithms for computing the Boltzmann collision operator, Math. Comput., 75 (2006), pp. 1833–1852.

[22]
Narayan, A. and Zhou, T., Stochastic collocation on unstructured multivariate meshes, Commun. Comput. Phys., 18 (2015), pp. 1–36.

[23]
Niederreiter, H., Hellekalek, P., Larcher, G. and Zinterhof, P., Monte Carlo and Quasi-Monte Carlo Methods 1996, Springer-Verlag, 1998.

[24]
Nobile, F., Tempone, R. and Webster, C., A sparse grid stochastic collocation method for partial differential equations with random input data, SIAM J. Numer. Anal.
46 (2008), pp. 2309–2345.

[25]
Schiavazzi, D., Doostan, A. and Iaccarino, G., Sparse multiresolution stochastic approximation for uncertainty quantification, Recent Advances in Scientific Computing and Applications, 586 (2013), pp. 295.

[26]
Schwab, C., Süli, E. and Todor, R. A., Sparse finite element approximation of high-dimensional transport-dominated diffusion problems, ESAIM: Mathematical Modelling and Numerical Analysis, 42 (2008), pp. 777–819.

[27]
Shen, J. and Yu, H., Efficient spectral sparse grid methods and applications to high-dimensional elliptic problems, SIAM J. Sci. Comput., 32 (2010), pp. 3228–3250.

[28]
Smolyak, S., Quadrature and interpolation formulas for tensor products of certain classes of functions, Doklady Akademii Nauk SSSR, 4 (1963), pp. 240–243.

[29]
Wang, Z., Tang, Q., Guo, W. and Cheng, Y., *Sparse grid discontinuous Galerkin methods for high-dimensional elliptic equations*, J. Comput. Phys., accepted.

[30]
Xiu, D., Fast numerical methods for stochastic computations: a review, Commun. Comput. Phys., 5 (2009), pp. 242–272.

[31]
Xiu, Dongbin, Numerical Methods for Stochastic Computation, Princeton University Press, Princeton, New Jersey, 2010.

[32]
Xiu, D. and Hesthaven, J., High-order collocation methods for differential equations with random inputs, SIAM J. Sci. Comput., 27 (2005), pp. 1118–1139.

[33]
Zenger, C., *Sparse grids*, in Parallel Algorithms for Partial Differential Equations, Proceedings of the Sixth GAMM-Seminar, vol. 31, 1990.