Skip to main content Accessibility help
×
Home
Hostname: page-component-55b6f6c457-hjh89 Total loading time: 0.384 Render date: 2021-09-28T07:48:52.025Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Bioavailability of Minerals and Trace Elements

Members of EC Flair Concerted Action No. 10: Measurements of micronutrient absorption and status*

Published online by Cambridge University Press:  14 December 2007

Susan Fairweather-Tait
Affiliation:
Institute of Food Research, Norwich Laboratory, Norwich Research Park, Colney, Norwich NR4 7UA, UK
Richard F. Hurrell
Affiliation:
Swiss Federal Institute of Technology Zurich, Laboratory for Human Nutrition, P. O. Box 474, 8803 Rüschlikon, Switzerland
Rights & Permissions[Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Research Article
Copyright
Copyright © The Nutrition Society 1996

References

Agnew, J. E. & Holdsworth, C. D. (1971). The effect of fat on calcium abosorption from a mixed meal in normal subjects, patients with malabsorptive disease, and patients with partial gastrectomy. Gut 12, 973977.Google Scholar
Alexander, W. D., Harden, R. McG., Harrison, M. T. & Shimmins, J. (1967). Some aspects of the absorption and concentration of iodide by the alimentary tract in man. Proceedings of the Nutrition Society 26, 6267.Google Scholar
Allen, L. H. (1982). Calcium bioavailability and absorption: a review. American Journal of Clinical Nutrition 35, 783808.Google Scholar
Anderson, R. A. & Kozlovsky, A. S. (1985). Chromium intake, absorption and excretion of subjects consuming self-selected diets. American Journal of Clinical Nutrition 41, 11711183.Google Scholar
Ardüser, F., Wolffram, S., Scharrer, E. & Schneider, B. (1986). Transport of selenate and selenite across the brush border membrane of rat and sheep small intestine. Biological Trace Element Research 9, 281290.Google Scholar
Arthur, J. R., Nicol, F. & Beckett, G. J. (1993). Selenium deficiency, thyroid hormone metabolism, and thyroid hormone deiodinases. American Journal of Clinical Nutrition 57, 236S239S.Google Scholar
August, D., Janghorbani, M. & Young, V. R. (1989). Determination of zinc and copper absorption at three dietary Zn-Cu ratios by using stable isotope methods in young adult and elderly subjects. American Journal of Clinical Nutrition 50, 14571463.Google Scholar
Ballot, D., Baynes, R. D., Bothwell, T. H., Gillooly, M., Macfarlane, B. J., MacPhail, A. P., Lyons, G., Derman, D. P., Bezwoda, W. R., Torrance, J. D., Bothwell, J. E. & Mayet, F. (1987). The effects of fruit juices and fruits on the absorption of iron from a rice meal. British Journal of Nutrition 57, 331343.Google Scholar
Barger-Lux, M. J., Heaney, R. P. & Recker, R. R. (1989). Time course of calcium absorption in humans: evidence for a colonic component. Calcified Tissue International 44, 308311.Google Scholar
Behne, D. (1989). Selenium homeostasis. In Selenium in Medicine and Biology, pp. 8391 [Nève, J. and Favier, A., editors]. Berlin: de Gruyter.Google Scholar
Bezwoda, W. R., Bothwell, T. H., Torrance, J. D., MacPhail, A. P., Charlton, R. W., Kay, G. & Levin, J. (1979). The relationship between marrow iron stores, plasma ferritin concentrations and iron absorption. Scandinavian Journal of Haematology 22, 113120.Google Scholar
Bo-Linn, G. W., Davis, G. R., Buddrus, D. J., Morawski, S. G., Santa Ana, C. & Fordtran, J. S. (1984). An evaluation of the importance of gastric acid secretion in the absorption of dietary calcium. Journal of Clinical Investigation 73, 640647.Google Scholar
Bohmer, T., Roseth, A., Holm, H., Weberg-Teigen, S. & Wahl, L. (1990). Bioavailability of oral magnesium supplementation in female students evaluated from elimination of magnesium in 24-hour urine. Magnesium and Trace Elements 9, 272278.Google Scholar
Breslau, N. A., McGuire, J. L., Zerwekh, J. E. & Pak, C. Y. C. (1982). The role of dietary sodium on renal excretion and intestinal absorption of calcium and on vitamin D metabolism. Journal of Clinical Endocrinology and Metabolism 55, 369373.Google Scholar
British Nutrition Foundation (1989). Calcium. London: British Nutrition Foundation.Google Scholar
British Nutrition Foundation (1995). Iron: Nutritional and Physiological Significance. London: Chapman and Hall.Google Scholar
Brittin, H. C. & Nossaman, C. E. (1986). Iron content of foods cooked in iron utensils. Journal of the American Dietetic Association 86, 897901.Google Scholar
Bronner, F. (1987). Intestinal calcium absorption: mechanisms and applications. Journal of Nutrition 117, 13471352.Google Scholar
Brown, R. C., Klien, A., Simmons, W. K. & Hurrell, R. F. (1990). The influence of Jamaican herb teas and other polyphenol-containing beverages on iron absorption in the rat. Nutrition Research 10, 343353.Google Scholar
Brune, M., Rossander, L. & Hallberg, L. (1989). Iron absorption and phenolic compounds: importance of different phenolic structures. European Jouranal of clinical Nutrition 43, 547557.Google Scholar
Castenmiller, J. J. M., Mensink, R. P., Van der Heijden, L., Kouwenhoven, T., Hautvast, J. G. A. J., de Leeuw, P. W. & Schaafsma, G. (1985). The effect of dietary sodium on urinary calcium and potassium excretion in normotensive men with different calcium intakes. American Journal of Clinical Nutrition 41, 5260.Google Scholar
Charlton, R. W. & Bothwell, T. H. (1983). Iron absorption. Annual Review of Medicine 34, 5568.Google Scholar
Chen, N. S. C., Tsai, A. & Dyer, I. A. (1973). Effect of chelating agents on chromium absorption in rats. Journal of Nutrition 103, 11821186.Google Scholar
Cheryan, M. (1980). Phytic acid interactions in food systems. CRC Critical Reviews in Food Science and Nutrition 13, 297335.Google Scholar
Choe, M. & Kies, C. (1989). Selenium bioavailability: the effect of guar gum supplementation on selenium utilization by human subjects. Nutrition Reports International 39, 557565.Google Scholar
Combs, G. F. (1988). Selenium in foods. Advances in Food Research 32, 85113.Google Scholar
Cook, J. D. & Monsen, E. R. (1977). Vitamin C, the common cold, and iron absorption. American Journal of Clinical Nutrition 30, 235241.Google Scholar
Cook, J. D., Reddy, M. B. & Hurrell, R. F. (1995). The effect of red and white wines on nonheme-iron absorption in humans. American Journal of Clinical Nutrition 61, 800804.Google Scholar
Dallman, P. R., Siimes, M. A. & Stekel, A. (1980). Iron deficiency in infancy and childhood. American Journal of Clinical Nutrition 33, 86118.Google Scholar
Davidsson, L., Cederblad, Å, Lönnerdal, B. & Sandström, B. (1989). Manganese absorption from human milk, cow's milk, and infant formulas in humans. American Journal of Diseases of Children 143, 823827.Google Scholar
Davidsson, L., Cederblad, Å, Lönnerdal, B. & Sandström, B. (1991). The effect of individual dietary components on manganese absorption in humans. American Journal of Clinical Nutrition 54, 10651070.Google Scholar
Davidsson, L., Galán, P., Kastenmayer, P., Cherouvrier, F., Juillerat, M.-A., Hercberg, S. & Hurrell, R. F. (1994 a). Iron bioavailability studied in infants: the influence of phytic acid and ascorbic acid in infant formulas based on soy isolate. Pediatric Research 36, 816822.Google Scholar
Davidsson, L., Kastenmayer, P., Yuen, M., Lönnerdal, B. & Hurrell, R. F. (1994 b). Influence of lactoferrin on iron absorption from human milk in infants. Pediatric Research 35, 117124.Google Scholar
Davis, C. D., Malecki, E. A. & Greger, J. L. (1992). Interactions among dietary manganese, heme iron, and nonheme iron in women. American Journal of Clinical Nutrition 56, 926932.Google Scholar
Davis, G. K. & Mertz, W. (1987). Copper. In Trace Elements in Human and Animal Nutrition, 5th edn, vol. 1, pp. 301364 [Mertz, W., editor]. San Diego, CA: Academic Press.Google Scholar
Davis, R. H., Morgan, D. B. & Rivlin, R. S. (1970). The excretion of calcium in the urine and its relation to calcium intake, sex and age. Clinical Science 39, 112.Google Scholar
Delange, F. & Bürgi, H. (1989). Iodine deficiency disorders in Europe. Bulletin of the World Health Organization 67, 317325.Google Scholar
Derman, D. P., Bothwell, T. H., Torrance, J. D., Bezwoda, W. R., MacPhail, A. P., Kew, M. C., Sayers, M. H., Disler, P. B. & Charlton, R. W. (1980). Iron absorption from maize (Zea mays) and sorghum (Sorghum vulgare) beer. British Journal of Nutrition 43, 271279.Google Scholar
Disler, P. B., Lynch, S. R., Charlton, R. W., Torrance, J. D., Bothwell, T. H., Walker, R. B. & Mayet, F. (1975). The effect of tea on iron absorption. Gut 16, 193200.Google Scholar
Doesthale, Y. G. & Gopalan, C. (1974). The effect of molybdenum levels in sorghum (Sorghum vulgare, Pers.) on uric and copper excretion in man. British Journal of Nutrition 31, 351.Google Scholar
Doisy, E. A. (1972). Micronutrient controls on biosynthesis of clotting proteins and cholesterol. In Trace Substances in Environtnental Health, (University of Missouri 6th annual conference), pp. 193199 [Hemphill, D., editor]. Columbia, MO: University of Missouri Press.Google Scholar
Doisy, R. J., Streeten, D. H. P., Freiberg, J. M. & Schneider, A. J. (1976). Chromium metabolism in man and biochemical effects. In Trace Elements in Human Health and Disease, Volume II, Essential and Toxic Elements, pp. 79104 [Prasad, A. S., editor]. New York: Academic Press.Google Scholar
Dowling, H. J., Offenbacher, E. G. & Pi-Sunyer, F. X. (1990). Effects of amino acids on the absorption of trivalent chromium and its retention by regions of the rat small intestine. Nutrition Research 10, 12611271Google Scholar
Dunn, J. T. (1993). Iodine supplementation and prevention of cretinism. Annals of the New York Academy of Sciences 678, 158168.Google Scholar
Fairweather-Tait, S. J., Fox, T. E. & Mallilin, A. (1995 a). Balti curries and iron. British Medical Journal 310, 1368.Google Scholar
Fairweather-Tait, S. J., Fox, T. E., Wharf, S. G., Eagles, J. & Kennedy, H. (1992). Zinc absorption in adult men from a chicken sandwich made with white or wholemeal bread, measured by a double-label stable-isotope technique. British Journal of Nutrition 67, 411419.Google Scholar
Fairweather-Tait, S. J., Johnson, A., Eagles, J., Ganatra, S., Kennedy, H. & Gurr, M. I. (1989 a). Studies on calcium absorption from milk using a double-label stable isotope technique. British Journal of Nutrition 62, 379388.Google Scholar
Fairweather-Tait, S. J., Portwood, D. E., Symss, L. L., Eagles, J. & Minski, M. J., (1989 b). Iron and zinc absorption in human subjects from a mixed meal of extruded and nonextruded wheat bran and flour. American Journal of Clinical Nutrition 49, 151155.Google Scholar
Fairweather-Tait, S. J., Prentice, A., Heumann, K. G., Jarjou, L. M. A., Stirling, D. M., Wharf, S. G. & Turnlund, J. R. (1995 b). Effect of calcium supplements and stage of lactation on the calcium absorption efficiency of lactating women accustomed to low calcium intakes. American Journal of Clinical Nutrition 62, 11881192.Google Scholar
Fine, K. D., Santa Ana, C. A., Porter, J. L. & Fordtran, J. S. (1991). Intestinal absorption of magnesium from food and supplements. Journal of Clinical Investigation 88, 396402.Google Scholar
Finley, E. B. & Cerklewski, F. L. (1983). Influence of ascorbic acid supplementation on copper status in young adult men. American Journal of Clinical Nutrition 37, 553556.Google Scholar
Foy, A. (1980). Magnesium: the neglected cation. Medical Journal of Australia 1, 305306.Google Scholar
Fujita, T., Chan, J. C. M. & Bartter, F. C. (1984). Effects of oral furosemide and salt loading on parathyroid function in normal subjects. Physiological basis for renal hypercalciuria. Nephron 38, 109114.Google Scholar
Galán, P., Cherouvrier, F., Preziosi, P. & Hercberg, S. (1991). Effects of the increasing consumption of dairy products upon iron absorption. European Journal of Clinical Nutrition 45, 553559.Google Scholar
Gillooly, M., Bothwell, T. H., Torrance, J. D., MacPhail, A. P., Derman, D. P., Bezwoda, W. R., Mills, W., Charlton, R. W. & Mayet, F. (1983). The effects of organic acids, phytates and polyphenols on the absorption of iron from vegetables. British Journal of Nutrition 49, 331342.Google Scholar
Greger, J. L. & Marcus, R. E. (1981). Effect of dietary protein, phosphorus, and sulfur amino acids on selenium metabolism of adult males. Annals of Nutrition and Metabolism 25, 97108.Google Scholar
Greger, J. L. & Snedeker, S. M. (1980). Effect of dietary protein and phosphorus levels on the utilization of zinc, copper and manganese by adult males. Journal of Nutrition 110, 22432253.Google Scholar
Griessen, M., Cochet, B., Infante, F., Jung, A., Bartholdi, P., Donath, A., Loizeau, E. & Courvoisier, B. (1989). Calcium absorption from milk in lactase-deficient subjects. American Journal of Clinical Nutrition 49, 377384.Google Scholar
Hallberg, L. (1981). Bioavailability of dietary iron in man. Annual Review of Nutrition 1, 123147.Google Scholar
Hallberg, L., Björn-Rasmussen, E., Rossander, L., Suwanik, R., Pleehachinda, R. & Tuntawiroon, M. (1983). Iron absorption from some Asian meals containing contamination iron. American Journal of Clinical Nutrition 37, 272277.Google Scholar
Hallberg, L., Brune, M., Erlandsson, M., Sandberg, A.-S. & Rossander-Hultén, L. (1991). Calcium: effect of different amounts on non-heme and heme-iron absorption in humans. American Journal of Clinical Nutrition 53, 112119.Google Scholar
Hallberg, L., Brune, M. & Rossander, L. (1989). Iron absorption in man: ascorbic acid and dose-dependent inhibition by phytate. American Journal of Clinical Nutrition 49, 140144.Google Scholar
Hallberg, L. & Rossander, L. (1982). Effect of different drinks on the absorption of non-heme iron from composite meals. Human Nutrition: Applied Nutrition 36, 116123.Google Scholar
Hallberg, L., Rossander, L. & Skånberg, A.-B. (1987). Phytates and the inhibitory effect of bran on iron absorption in man. American Journal of Clinical Nutrition 45, 988996.Google Scholar
Hallberg, L., Rossander-Hultén, L., Brune, M. & Gleerup, A. (1992). Calcium and iron absorption: mechanism of action and nutritional importance. European Journal of Clinical Nutrition 46, 317327.Google Scholar
Hambidge, K. M. (1986). Zinc. In Trace Elements in Human and Animal Nutrition, pp. 1137 [Mertz, W., editor]. Orlando, FL: Academic Press.Google Scholar
Hazell, T. (1985). Minerals in foods: dietary sources, chemical forms, interactions, bioavailability. World Review of Nutrition and Dietetics 46, 1123.Google Scholar
Heaney, R. P. (1991). Human calcium absorptive performance. In Nutritional Aspects of Osteoporosis (Serono Symposium 85), pp. 115123 [Burckhardt, P., and Heaney, R. P., editors]. New York: Raven Press.Google Scholar
Heaney, R. P., Recker, R. R. & Weaver, C. M. (1990). Absorbability of calcium sources: the limited role of solubility. Calcified Tissue International 46, 300304.Google Scholar
Heaney, R. P., Smith, K. T., Recker, R. R. & Hinders, S. M. (1989). Meal effects on calcium absorption. American Journal of Clinical Nutrition 49, 372376.Google Scholar
Heaney, R. P. & Weaver, C. M. (1990). Calcium absorption from kale. American Journal of Clinical Nutrition 51, 656657.Google Scholar
Heaney, R. P., Weaver, C. M. & Fitzsimmons, M. L. (1991). Soybean phytate content: effect on calcium absorption. American Journal of Clinical Nutrition 53, 745–741.Google Scholar
Heaney, R. P., Weaver, C. M. & Recker, R. R. (1988). Calcium absorbability from spinach. American Journal of Clinical Nutrition 47, 707709.Google Scholar
Hercberg, S., Galán, P. & Dupin, H. (1987). Iron deficiency in Africa. World Review of Nutrition and Dietetics 54, 201236.Google Scholar
Hirschfelder, A. D. & Haury, V. G. (1934). Clinical manifestations of high and low plasma magnesium. Journal of the American Medical Association 102, 11381141.Google Scholar
Holbrook, J. T., Smith, J. C. & Reiser, S. (1989). Dietary fructose or starch: effects on copper, zinc, iron, manganese, calcium, and magnesium balances in humans. American Journal of Clinical Nutrition 49, 12901294.Google Scholar
Hurrell, R. F. (1992). Prospects for improving the iron fortification of foods. In Nutritional Anemias (Nestlé Nutrition Workshop Series no. 10), pp. 193208 [Fomon, S. J. and Zlotkin, S., editors]. New York: Raven Press.Google Scholar
Hurrell, R. F., Berrocal, R., Lynch, S. R., Dassenko, S. A. & Cook, J. D. (1990). The influence of bovine milk proteins on iron absorption in man. In Recent Knowledge of Iron and Folate Deficiencies in the World [Hercberg, S., Galán, P. and Dupin, H., editors]. Paris: INSERM.Google Scholar
Hurrell, R. F., Furniss, D. E., Burri, J., Whittaker, P., Lynch, S. R. & Cook, J. D. (1989 a). Iron fortification of infant cereals: a proposal for the use of ferrous fumarate or ferrous succinate. American Journal of Clinical Nutrition 49, 12741282.Google Scholar
Hurrell, R. F., Juillerat, M.-A., Reddy, M. B., Lynch, S. R., Dassenko, S. A. & Cook, J. D. (1992). Soy protein, phytate, and iron absorption in humans. American Journal of Clinical Nutrition 56, 573578.Google Scholar
Hurrell, R. F., Lynch, S. R., Trinidad, T. P., Dassenko, S. A. & Cook, J. D. (1989 b). Iron absorption in humans as influenced by bovine milk proteins. American Journal of Clinical Nutrition 49, 546552.Google Scholar
International Nutritional Anemia Consultative Group (INACG) (1993). Iron EDTA for Food Fortification. Washington, DC: The Nutrition Foundation/ILSI.Google Scholar
Ireland, P. & Fordtran, J. S. (1973). Effect of dietary calcium and age on jejunal calcium absorption in humans studied by intestinal perfusion. Journal of Clinical Investigation 52, 26722681.Google Scholar
Istfan, N. W., Janghorbani, M. & Young, V. R. (1983). Absorption of stable 70Zn in healthy young men in relation to zinc intake. American Journal of Clinical Nutrition 38, 187194.Google Scholar
Jacob, R. A., Skala, J. H., Omaye, S. T. & Turnlund, J. R. (1987). Effect of varying ascorbic acid intakes on copper absorption and ceruloplasmin levels of young men. Journal of Nutrition 117, 21092115.Google Scholar
Johnson, P. E., Lykken, G. I. & Korynta, E. D. (1991). Absorption and biological half-life in humans of intrinsic and extrinsic 54Mn tracers from foods of plant origin. Journal of Nutrition 121, 711717.Google Scholar
Johnson, P. E., Milne, D. B. & Lykken, G. I. (1992). Effects of age and sex on copper absorption, biological half-life, and status in humans. American Journal of Clinical Nutrition 56, 917925.Google Scholar
Johnson, P. E., Stuart, M. A., Hunt, J. R., Mullen, L. & Starks, T. L. (1988). 65Cu absorption by women fed intrinsically and extrinsically labeled goose meat, goose liver, peanut better and sunflower butter. Journal of Nutrition 118, 15221528.Google Scholar
Katamine, S., Mamiya, Y., Sekimoto, K., Hoshino, N., Totsuk, K. & Suzuki, M. (1987). Differences in bioavailability of iodine among iodine-rich foods and food colors. Nutrition Reports International 35, 289297.Google Scholar
Kato, T., Read, R., Rozga, J. & Burk, R. F. (1992). Evidence for intestinal release of absorbed selenium in a form with high hepatic extraction. American Journal of Physiology 262, G854G858.Google Scholar
Keen, C. L. & Zidenberg-Cherr, S. (1990). Manganese. In Present Knowledge in Nutrition, 6th edn, pp. 279286 [Brown, M. L., editor]. Washington, DC: International Life Sciences Institute, Nutriton Foundation.Google Scholar
Kelsay, J. L., Behall, K. M. & Prather, E. S. (1979). Effect of fiber from fruits and vegetables on metabolic responses of human subjects. 2. Calcium, magnesium, iron, and silicon balances. American Journal of Clinical Nutrition 32, 18761880.Google Scholar
Khan, A., Bryden, N. A., Polansky, M. M. & Anderson, R. A. (1990). Insulin potentiating factor and chromium content of selected foods and spices. Biological Trace Element Research 24, 183188.Google Scholar
Korc, M. (1988). Manganese homeostasis in humans and its role in disease states. In Essential and Toxic Trace Elements in Human Health and Disease (Current Topics in Nutrition and Disease vol. 18, 1986), pp. 253273. New York: Alan R. Liss.Google Scholar
Korhola, M., Vainio, A. & Edelmann, K. (1986). Selenium yeast, Annals of Clinical Research 18, 6568.Google Scholar
Kozlovsky, A. S., Moser, P. B., Reiser, S. & Anderson, R. A. (1986). Effects of diets high in simple sugars on urinary chromium losses. Metabolism 35, 515518.Google Scholar
Lamand, M. & Tressol, J. C. (1992). Contribution of milk to iodine intake in France. Biological Trace Element Research 32, 245251.Google Scholar
Lamberg, B.-A. (1993). Iodine deficiency disorders and endemic goitre. European Journal of Clinical Nutrition 47, 18.Google Scholar
Layrisse, M., Martinez-Torres, C., Leets, I., Taylor, P. G. & Ramirez, J. (1984). Effect of histidine, cysteine, glutathione or beef on iron absorption in humans. Journal of Nutrition 114, 217223.Google Scholar
Layrisse, M., Martinez-Torres, C. & Roche, M. (1968). Effect of interaction of various foods on iron absorption. American Journal of Clinical Nutrition 21, 11751183.Google Scholar
Leach, R. M. & Lilburn, M. S. (1978). Manganese metabolism and its function. World Review of Nutrition and Dietetics 32, 123134.Google Scholar
Lee, D.-Y. & Johnson, P. E. (1989). 54Mn absorption and excretion in rats fed soy protein and casein diets. Proceedings of the Society for Experimental Biology and Medicine 190, 211216.Google Scholar
Lee, H. H., Prasad, A. S., Brewer, G. J. & Owyang, C. (1989). Zinc absorption in human small intestine. American Journal of Physiology 256, G87G91.Google Scholar
Lee, W. K. T., Leung, S. F., Xu, Y. C., Wang, S. H., Zeng, W. P., Lau, J. & Fairweather-Tait, S. J. (1995). Effects of double-blind controlled calcium supplementation on calcium absorption in Chinese children measured with stable isotopes (42Ca and 44Ca). British Journal of Nutrition 73, 311321.Google Scholar
Levander, O. A. (1983). Considerations in the design of selenium bioavailability studies. Federation Proceedings 42, 17211725.Google Scholar
Levander, O.A., Alfthan, G., Arvilommi, H., Gref, C. G., Huttunen, J. K., Kataja, M., Koivistoinen, P. & Pikkaraine, J. (1983). Bioavailability of selenium to Finnish men as assessed by platelet glutathione peroxidase activity and other blood parameters. American Journal of Clinical Nutrition 37, 887897.Google Scholar
Lindberg, J. S., Zobitz, M. M., Poindexter, J. R. & Pak, C. Y. C. (1990). Magnesium bioavailability from magnesium citrate and magnesium oxide. Journal of the American College of Nutrition 9, 4855.Google Scholar
Lockitch, G., Jacobson, B., Quigley, G., Dison, P. & Pendray, M. (1989). Selenium deficiency in low birth weight neonates: an unrecognized problem. Journal of Pediatrics 114, 865870.Google Scholar
Lönnerdal, B., Cederblad, Å, Davidsson, L. & Sandström, B. (1984). The effect of individual components of soy formula and cows' milk formula on zinc bioavailability. American Journal of Clinical Nutrition 40, 10641070.Google Scholar
Lönnerdal, B., Keen, C. L. & Hurley, L. S. (1983). Manganese binding in human milk and cows' milk – an effect on bioavailability. Federation Proceedings 42, 926.Google Scholar
Lönnerdal, B., Yuen, M., Glazier, C. & Litov, R. E. (1993). Magnesium bioavailability from human milk, cow milk, and infant formula in suckling rat pups. American Journal of Clinical Nutrition 58, 392397.Google Scholar
Lykken, G. I., Mahalko, J., Johnson, P. E., Milne, D., Sandstead, H. H., Garcia, W. J., Dintzis, F. R. & Inglett, G. E. (1986). Effect of browned and unbrowned corn products intrinsically labelled with 65Zn on absorption of 65Zn in humans. Journal of Nutrition 116, 795801.Google Scholar
Lynch, S. R., Dassenko, S. A., Cook, J. D., Juillerat, M.-A. & Hurrell, R. F. (1994). Inhibitory effect of a soybean-protein-related moiety on iron absorption in humans. American Journal of Clinical Nutrition 60, 567572.Google Scholar
Ma, T., Guo, J. & Wang, F. (1993). The epidemiology of iodine-deficiency diseases in China. American Journal of Clinical Nutrition 57, 264S266S.Google Scholar
McCance, R. A. & Widdowson, E. M. (1942). Mineral metabolism of healthy adults on white and brown bread dietaries. Journal of Physiology 101, 4485.Google Scholar
McConnell, K. P. & Cho, G. J. (1965). Transmucosal movement of selenium. American Journal of Physiology 208, 11911195.Google Scholar
McDowell, L. R. (1992 a). Iodine. In Minerals in Animal and Human Nutririon, pp. 224245. New York: Academic Press.Google Scholar
McDowell, L. R. (1992 b). Minerals in Animal and Human Nutrition. New York: Academic Press.Google Scholar
Macfarlane, J., Baynes, R. D., Bothwell, T. H., Schmidt, U., Mayet, F. & Friedman, B. M. (1988). Effect of lupines, a protein-rich legume, on iron absorption. European Journal of Clinical Nutrition 42, 683687.Google Scholar
MacPhail, A. P., Charlton, R., Bothwell, T. H. & Bezwoda, W. R. (1985). Experimental fortificants. In Iron Fortification of Foods, pp. 5575 [ Clydesdale, I. M. and Weimer, K. L., editors]. New York: Academic Press.Google Scholar
Martin, R. F., Janghorbani, M. & Young, V. R. (1989 a). Experimental selenium restriction in healthy adult humans: changes in selenium metabolism studied with stable-isotope methodology. American Journal of Clinical Nutrition 49, 854861.Google Scholar
Martin, R. F., Young, V. R., Blumberg, J. & Janghorbani, M. (1989 b). Ascorbic acid-selenite interactions in humans studied with an oral dose of 74SeO2-3. American Journal of Clinical Nutrition 49, 862869.Google Scholar
Martinez, F. E. & Vannucchi, H. (1986). Bioavailability of iron added to the diet by cooking food in an iron pot. Nutrition Research 6, 421428.Google Scholar
Martinez-Torres, C. & Layrisse, M. (1970). Effect of amino acids on iron absorption from a staple vegetable food. Blood 35, 669682.Google Scholar
Mason, K. E. (1979). A conspectus of research on copper metabolism and requirements of man. Journal of Nutrition 109, 19792066.Google Scholar
Meltzer, H. M., Bibow, K., Paulsen, I. T., Mundal, H. H., Norheim, G. & Holm, H. (1993). Different bioavailability in humans of wheat and fish selenium as measured by blood platelet response to increased dietary Se. Biological Trace Element Research 36, 229241.Google Scholar
Mertz, W. (1993). Chromium in human nutrition: a review. Journal of Nutrition 123, 626633.Google Scholar
Miller, J. Z., Smith, D. L., Flora, L., Slemenda, C.Jiang, X. & Johnston, C. C. (1988). Calcium absorption from calcium carbonate and a new form of calcium (CCM) in healthy male and female adolescents. American Journal of Clinical Nutrition 48, 12911294.Google Scholar
Mills, C. F. (1992). The physiological roles of copper. Food Chemistry 43, 239240.Google Scholar
Monsen, E. R., Hallberg, L., Layrisse, M., Hegsted, D. M., Cook, J. D., Mertz, W. & Finch, C. A. (1978). Estimation of available dietary iron. American Journal of Clinical Nutrition 31, 134141.Google Scholar
Morck, T. A., Lynch, S. R. & Cook, J. D. (1983). Inhibition of food iron absorption by coffee. American Journal of Clinical Nutrition 37, 416420.Google Scholar
Morris, B. W., Blumsohn, A., Mac Neil, S. & Gray, T. A. (1992). The trace element chromium – a role in glucose homeostasis. American Journal of Clinical Nutrition 55, 989991.Google Scholar
Morris, E. R. & Ellis, R. (1985). Bioavailability of dietary calcium. In Nutritional Bioavailability of Calcium, pp. 6372 [Kies, C., editor]. Washington, DC: American Chemical Society.Google Scholar
Muhlbauer, B., Schwenk, M., Coram, W. M., Antonin, K. H., Etienne, P., Bieck, P. R. & Douglas, F. L. (1991). Magnesium-L-aspartate-HCI and magnesium oxide: bioavailability in healthy volunteers. European Journal of Clinical Pharmacology 40, 437438.Google Scholar
Mutanen, M. (1986). Bioavailability of selenium in mushrooms, Boletus edulis, to young women. International Journal for Vitamin and Nutrition Research 56, 297301.Google Scholar
Mutanen, M. & Mykkänen, H. M. (1985). Effect of ascorbic acid supplementation on selenium bioavailability in humans. Human Nutrition: Clinical Nutrition 39C, 221226.Google Scholar
National Research Council (1989). Recommended Dietary Allowances, 10th edn. Washington, DC: National Academy Press.Google Scholar
Nävert, B., Sandström, B. & Cederblad, Å. (1985). Reduction of the phytate content of bran by leavening in bread and its effect on zinc absorption in man. British Journal of Nutrition 53, 4753.Google Scholar
Nève, J., Vertongen, F. & Molle, L. (1985). Selenium deficiency. Clinics in Endocrinology and Metabolism 14, 629656.Google Scholar
Offenbacher, E. G. (1992). Chromium in the elderly. Biological Trace Element Research 32, 123131.Google Scholar
Olson, O. E., Novacek, E. J., Whitehead, E. I. & Palmer, I. S. (1970). Investigations on selenium in wheat. Phytochemistry 9, 11811187.Google Scholar
Oster, O., Schmiedel, G. & Prellwitz, W. (1988). Organ distribution of selenium in German adults. Biological Trace Element Research 15, 2345.Google Scholar
Patterson, B. H., Zech, L. A., Swanson, C. A. & Levander, O. A. (1993). Kinetic modeling of selenium in humans using stable isotope tracers. Journal of Trace Elements and Electrolytes in Health and Disease 7, 117120.Google Scholar
Pennington, J. A. T. (1988). Iodine. In Trace Minerals in Foods, pp. 249289 [Smith, K. T., editor]. New York: Marcel Dekker.Google Scholar
Rannem, T., Ladefoged, K., Hylander, E., Hegnhoj, J. & Jarnum, S. (1993). Selenium depletion in patients on home parenteral nutrition. The effect of selenium supplementation. Biological Trace Element Research 39, 8190.Google Scholar
Recker, R. R. (1985). Calcium absorption and achlorhydria. New England Journal of Medicine 313, 7073.Google Scholar
Reinhold, J. G., Faradji, B., Abadi, P. & Ismail-Beigi, F. (1976). Decreased absorption of calcium, magnesium, zinc and phosphorus by humans due to increased fiber and phosphorus consumption as wheat bread. Journal of Nutrition 106, 493503.Google Scholar
Reinhold, J. G., Nasr, K., Lanhimgarzadeh, A. & Hedayati, H. (1973). Effects of purified phytate and phytate-rich bread upon metabolism of zinc, calcium, calcium, phosphorus, and nitrogen in man. Lancet i, 283288.Google Scholar
Reiser, S., Smith, J. C., Mertz, W., Holbrook, J. T., Schofield, D. J., Powell, A. S., Canfield, W. K. & Canary, J. J. (1985). Indices of copper status in humans consuming a typical American diet containing either fructose or starch. American Journal of Clinical Nutrition 42, 242251.Google Scholar
Robberecht, H. & Van Grieken, R. (1982). Selenium in environmental waters: determination, speciation and concentration levels. Talanta 29, 823844.Google Scholar
Roberts, A. H. & Yudkin, J. (1960). Dietary phytate as a possible cause of magnesium deficiency. Nature 185, 823825.Google Scholar
Robinson, M. F. & Thomson, C. D. (1983). The role of selenium in the diet. Nutrition Abstracts and Reviews 53, 326.Google Scholar
Roekens, E. J., Robberecht, H. J. & Deelstra, H. A. (1986). Dietary selenium intake in Belgium for different population groups at risk for deficiency. Zeitschrijt für Lebensmittel-Untersuchung und -Forschung 182, 813.Google Scholar
Rossander, L., Sandberg, A.-S. & Sandström, B. (1992). The influence of dietary fibre on mineral absorption and utilisation. In Dietary Fibre – a Component of Food: Nutritional Function in Health and Disease, pp. 197216 [Schweizer, T. F. and Edwards, C. A., editors]. London: Springer Verlag.Google Scholar
Sandstead, H. H. (1982). Copper bioavailability and requirements. American Journal of Clinical Nutrition 35, 809814.Google Scholar
Sandström, B. (1992). Dose dependence of zinc and manganese absorption in man. Proceedings of the Nutrition Society 51, 211218.Google Scholar
Sandström, B., Arvidsson, B., Cederblad, Å. & Björn-Rasmussen, E. (1980). Zinc absorption from composite meals. I. The significance of wheat extraction rate, zinc, calcium, and protein content in meals based on bread. American Journal of Clinical Nutrition 33, 739745.Google Scholar
Sandström, B., Cederblad, Å. & Lönnerdal, B. (1983). Zinc absorption from human milk, cow's milk, and infant formulas. American Journal of Diseases of Children 131, 726729.Google Scholar
Sandström, B., Davidson, L., Cederblad, Å. & Lönnerdal, B. (1985). Oral iron, dietary ligands and zinc absorption. Journal of Nutrition 115, 411414.Google Scholar
Sandström, B., Kivistö, B. & Cederblad, Å. (1987). Absorption of zinc from soy protein meals in humans. Journal of Nutrition 117, 321327.Google Scholar
Sandström, B. & Sandberg, A.-S. (1992). Inhibitory effects of isolated inositol phosphates on zinc absorption in humans. Journal of Trace Elements and Electrolytes in Health and Disease 6, 99103.Google Scholar
Scharrer, E., Senn, E. & Wolffram, S. (1992). Stimulation of mucosal uptake of selenium from selenite by some thiols at various sites of rat intestine. Biological Trace Element Research 33, 109120.Google Scholar
Schlebusch, H., Pietrzik, K., Gilles-Schmogner, G. & Zien, A. (1992). [Bioavailability of magnesium as orotate and hydroxycarbonate.] Medizinische Welt 43, 523528.Google Scholar
Schwartz, R. (1984). Stable 26Mg for dietary magnesium availability measurements. In Stable Isotopes in Nutrition (ACS Symposium Series no. 258), pp. 7789 [Turnlund, J. R. and Johnson, P. E., editors]. Washington D.C.: American Chemical Society.Google Scholar
Schwartz, R., Spencer, H. & Welsh, J. J. (1984). Magnesium absorption in human subjects from leafy vegetables, intrinsically labeled with stable 26Mg. American Journal of Clinical Nutrition 39, 571576.Google Scholar
Seaborn, C. D. & Stoecker, B. J. (1990). Effects of antacid or ascorbic acid on tissue accumulation and urinary excretion of 51chromium. Nutrition Research 10, 14011407.Google Scholar
Seaborn, C. D. & Stoecker, B. J. (1992). Effects of ascorbic acid depletion and chromium status on retention and urinary excretion of 51chromium. Nutrition Research 12, 12291234.Google Scholar
Seelig, M. S. (1980). Magnesium Deficiency in the Pathogenesis of Disease. Early Roots of Cardiovascular, Skeletal and Renal Abnormalities. New York: Plenum Press.Google Scholar
Sheikh, M. S., Santa Ana, C. A., Nicar, M. J., Schiller, L. R. & Fordtran, J. S. (1987). Gastrointestinal absorption of calcium from milk and calcium salts. New England Journal of Medicine 317, 532536.Google Scholar
Shils, M. E. (1988). Magnesium in health and disease. Annual Review of Nutrition 8, 429460.Google Scholar
Shortt, C., Madden, A., Flynn, A. & Morrissey, P. A. (1988). Influence of dietary sodium intake on urinary calcium excretion in selected Irish individuals. European Journal of Clinical Nutrition 42, 595603.Google Scholar
Sian, L., Hambidge, K. M., Westcott, J. L., Miller, L. V. & Fennessey, P. V. (1993). Influence of a meal and incremental doses of zinc on changes in zinc absorption. American Journal of Clinical Nutrition 58, 533536.Google Scholar
Smith, K. T., Heaney, R. P., Flora, L. & Hinders, S. M. (1987). Calcium absorption from a new calcium delivery system (CCM). Calcified Tissue International 41, 351352.Google Scholar
Spencer, H., Kramer, L. & Osis, D. (1988). Do protein and phosphorus cause calcium loss? Journal of Nutrition 118, 657660.Google Scholar
Sunde, R. A. (1990). Molecular biology of selenoproteins. Annual Review of Nutrition 10, 451474.Google Scholar
Swanson, C. A., Turnlund, J. R. & King, J. C. (1983). Effect of dietary zinc sources and pregnancy on zinc utilization in adult women fed controlled diets. Journal of Nutrition 113, 25572567.Google Scholar
Taylor, C. M., Bacon, J. R., Aggett, P. J. & Bremner, I. (1991). Homeostatic regulation of zinc absorption and endogenous losses in zinc-deprived men. American Journal of Clinical Nutrition 53, 755763.Google Scholar
Taylor, P. G., Martinez-Torres, C., Romano, E. L. & Layrisse, M. (1986). The effect of cysteine-containing peptides released during meat digestion on iron absorption in humans. American Journal of Clinical Nutrition 43, 6871.Google Scholar
Thompson, D. B. (1988). Iron. In Trace Minerals in Foods, pp. 157208 [Smith, K. T., editor]. New York: Marcel Dekker.Google Scholar
Tuntawiroon, M., Sritongkul, N., Brune, M., Rossander-Hultén, L., Pleehachinda, R., Suwanik, R. & Hallberg, L. (1991). Dose-dependent inhibitory effect of phenolic compounds in foods on non-heme iron absorption in men. American Journal of Clinical Nutrition 53, 554557.Google Scholar
Turnlund, J. R. (1988). Copper nutriture, bioavailabihty and the influence of dietary factors. Journal of the American Dietetic Association 88, 303308.Google Scholar
Turnlund, J. R., Keen, C. L. & Smith, R. G. (1990). Copper status and urinary and salivary copper in young men at three levels of dietary copper. American Journal of Clinical Nutrition 51, 658664.Google Scholar
Turnlund, J. R., Keyes, W. R., Anderson, H. L. & Acord, L. L. (1989). Copper absorption and retention in young men at three levels of dietary copper by use of the stable isotope 65Cu. American Journal of Clinicul Nutrition 49, 870878.Google Scholar
Turnlund, J. R., Keyes, W. R., Hudson, C. A., Betschart, A. A., Kretsch, M. J. & Sauberlich, H. E. (1991). A stable-isotope study of zinc, copper, and iron absorption and retention by young women fed vitamin B-6-deficient diets. American Journal of Clinical Nutrition 54, 10591064.Google Scholar
Turnlund, J. R., King, J. C., Gong, B., Keyes, W. R. & Michel, M. C. (1985). A stable isotope study of copper absorption in young men: effect of phytate and α-cellulose. American Journal of Clinical Nutrition 42, 1823.Google Scholar
Turnlund, J. R., King, J. C., Keyes, W. R., Gong, B. & Michel, M. C. (1984). A stable isotope study of zinc absorption in young men: effects of phytate and α-cellulose. American Journal of Clinical Nutrition 40, 10711077.Google Scholar
Underwood, E. T. & Mertz, W. (1987). Introduction. In Truce Elements in Human and Animal Nutrition, vol. 1, pp. 120 [Mertz, W., editor]. San Diego, CA: Academic Press.Google Scholar
Urberg, M. & Zemel, M. B. (1987). Evidence for synergism between chromium and nicotinic acid in the control of glucose tolerance in elderly humans. Metabolism 36, 896899.Google Scholar
Valberg, L. S., Flanagan, P. R. & Chamberlain, M. J. (1984). Effects of iron, tin, and copper on zinc absorption in humans. American Journal of Clinical Nutrition 40, 536541.Google Scholar
Vanderpas, J. B., Contempré, B., Duale, N. L., Deckx, H., Bebe, N., Longombé, A. O., Thilly, C.-H., Diplock, A. T. & Dumont, J. E. (1993). Selenium deficiency mitigates hypothyroxinemia in iodine-deficient subjects. American Journal of Clinical Nutrition 57, 271S275s.Google Scholar
Vanderpas, J. B., Contempré, B., Duale, N. L., Goossens, W., Bebe, N., Thorpe, R., Ntambue, K., Dumont, J., Thilly, C. H. & Diplock, A. T. (1990). Iodine and selenium deficiency associated with cretinism in northern Zaire. American Journal of Clinical Nutrition 52, 10871093.Google Scholar
Vanderpas, J. B., Dumont, J. E., Contempr´, B. & Diplock, A. T. (1992). Iodine and selenium deficiency in northern Zaire. American Journal of Clinical Nutrition 56, 597598.Google Scholar
Van der Torre, H. W., Van Dokkum, W., Schaafsma, G., Wedel, M. & Ockhuizen, T. (1991). Effect of various levels of selenium in wheat and meat on blood Se status indices and on Se balance in Dutch men. British Journal of Nutrition 65, 6980.Google Scholar
Vendeland, S. C., Butler, J. A. & Whanger, P. D. (1992 a). Intestinal absorption of selenite, selenate, and selenomethionine in the rat. Journal of Nutritional Biochemistry 3, 359365.Google Scholar
Vendeland, S. C., Deagen, J. T. & Whanger, P. D. (1992 b). Uptake of selenotrisulfides of glutathione and cysteine by brush border membranes from rat intestines. Journal of Inorganic Biochemistry 47, 131140.Google Scholar
von Fellenberg, T. (1926). [The source, uptake and metabolism of iodine.] Ergebnisse der Physiologie 25, 176363.Google Scholar
Wada, L., Turnlund, J. R. & King, J. C. (1985). Zinc utilization in young men fed adequate and low zinc intakes. Journal of Nutrition 115, 13451354.Google Scholar
Wang, M. M., Li, Y.-C., Oladut, W. K. & Stoecker, B. J. (1985). Chromium and ascorbate deficiency effects on serum cholesterol, triglycerides and glucose of guinea pigs. Federation Proceedings 44, 751.Google Scholar
Waschulewski, I. H. & Sunde, R. A. (1988). Effect of dietary methionine on utilization of tissue selenium from dietary selenomethionine for glutathione peroxidase in the rat. Journal of Nutrition 118, 367374.Google Scholar
Weaver, C. M., Heaney, R. P., Martin, B. R. & Fitzsimmons, M. L. (1991). Human calcium absorption from whole-wheat products. Journal of Nutrition 121, 17691775.Google Scholar
Wenlock, R. W., Buss, D. H. & Dixon, E. J. (1979). Trace nutrients. 2. Manganese in British food. British Journal of Nutrition 41, 253261.Google Scholar
Whanger, P. D. (1981). Selenium and heavy metals. In Selenium in Biology and Medicine, pp. 230255 [Spallholz, J. E., Martin, J. L. and Ganther, H. E., editors]. Westport, CT: AVI.Google Scholar
Wolffram, S., Berger, B., Grenacher, B. & Scharrer, E. (1989). Transport of selenoamino acids and their sulfur analogues across the intestinal brush border membrane of pigs. Journal of Nutrition 119, 706712.Google Scholar
Xia, Y., Zhao, X., Zhu, L. & Whanger, P. D. (1992). Metabolism of selenate and selenomethionine by a seleniumdeficient population of men in China. Journal of Nutritional Biochemistry 3, 202210.Google Scholar
Xilinas, M. E. (1983). Manganese intake and congenital dislocation of the hip. South African Medical Journal 63, 393.Google Scholar
Yasumoto, K., Suzuki, T. & Yoshida, M. (1988). Identification of selenomethionine in soybean protein. Journal of Agricultural and Food Chemistry 36, 463467.Google Scholar
Zachara, B. A. (1992). Mammalian selenoproteins. Journal of Trace Elements and Electrolytes in Health and Disease 6, 137151.Google Scholar
Zeisel, S. H., Ellis, A. L., Sun, X. F., Pomfret, E. A., Ting, B. T. G. & Janghorbani, M. (1987). Dose-response relations in urinary excretion of trimethylselononium in the rat. Journal of Nutrition 117, 16091614.Google Scholar
Zemel, M. B. (1988). Calcium utilization: effect of varying level and source of dietary protein. American Journal of Clinical Nutrition 48, 880883.Google Scholar
You have Access
145
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Bioavailability of Minerals and Trace Elements
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Bioavailability of Minerals and Trace Elements
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Bioavailability of Minerals and Trace Elements
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *