Skip to main content Accessibility help
×
Home

Bone mineral density, polyphenols and caffeine: a reassessment

  • T. P. Dew (a1), A. J. Day (a1) and M. R. A. Morgan (a1)

Abstract

Several studies have shown beneficial associations between tea consumption and bone mineral density (BMD) and fracture risk. Current investigations into potential mechanisms of benefit are focused upon the F and polyphenol components of tea. However, previous studies have pointed towards caffeine consumption as a potential risk factor for low BMD and high fracture risk. Tea, therefore, represents an interesting paradox as a mildly caffeinated beverage that may enhance bone health. Fruit and vegetable intake has also been associated with BMD, and it is now apparent that several fruit and vegetable components, including polyphenols, may contribute positively to bone health. Evidence surrounding the function(s) of polyphenol-rich foods in bone health is examined, along with more recent studies challenging the relevance of caffeine consumption to in vivo Ca balance. Plant foods rich in polyphenols such as tea, fruit and vegetables, as significant factors in a healthy diet and lifestyle, may have positive roles in bone health, and the negative role of caffeine may have been overestimated. The present review covers evidence of dietary mediation in positive and negative aspects of bone health, in particular the roles of tea, fruit and vegetables, and of caffeine, flavonoids and polyphenols as components of these foods. Since the deleterious effects of caffeine appear to have been overstated, especially in respect of the positive effects of flavonoids, it is concluded that a reassessment of the role of caffeinated beverages may be necessary.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Bone mineral density, polyphenols and caffeine: a reassessment
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Bone mineral density, polyphenols and caffeine: a reassessment
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Bone mineral density, polyphenols and caffeine: a reassessment
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Professor Mike Morgan, fax +44 113 343 2982, email m.morgan@food.leeds.ac.uk

References

Hide All
1Kanis, JA, Brazier, JE, Stevenson, M, Calvert, NW & Lloyd Jones, M (2002) Treatment of Established Osteoporosis: a Systematic Review and Cost-Utility Analysis, Health Technology Assessment 6, no. 29. Southampton: National Coordinating Centre for Health Technology Assessment.
2Torgerson, DJ, Iglesias, CP & Reid, DM (2001) The economics of fracture prevention. In The Effective Management of Osteoporosis, pp. 111122 [Barlow, DH, Francis, RM and Miles, A, editors]. London: Aesculapius Medical Press.
3Heaney, RP & Recker, RR (1982) Effects of nitrogen, phosphorus, and caffeine on calcium balance in women. J Lab Clin Med 99, 4655.
4Ganong, WF (1979) Review of Medical Physiology, 9th ed. Stamford, CT, USA: Appleton and Lange.
5Smith, R (1993) Bone mineral. In Human Nutrition and Dietetics, 9th ed., pp. 163173 [Garrow, JS and James, WPT, editors]. Edinburgh: Churchill Livingston.
6Johnell, OJ, Gullberg, B, Kanis, JA et al. . (1995) Risk factors for hip fracture in European women: The MEDOS study. J Bone Miner Res 10, 18021815.
7Weisburger, JH (1997) Tea and health: a historical perspective. Cancer Lett 114, 315317.
8Hoover, PA, Webber, CE, Beaumont, LF & Blake, JM (1996) Post-menopausal bone mineral density: relationship to calcium intake, calcium absorption, residual oestrogen, body composition, and physical activity. Can J Physiol Pharmacol 74, 911917.
9Hegarty, VM, May, HM & Khaw, K-T (2000) Tea drinking and bone mineral density in older women. Am J Clin Nutr 71, 10031007.
10Crawley, H (1990) Food Portion Sizes, 2nd ed. London: Her Majesty's Stationery Office.
11Paul, AA & Southgate, DAT (1978) McCance, Widdowson's ‘The Composition of Foods’, 4th ed. London: Her Majesty's Stationery Office.
12Wu, C-H, Yang, Y-C, Yao, W-J, Lu, F-H, Wu, JS & Chang, C-J (2002) Epidemiological evidence of increased bone mineral density in habitual tea drinkers. Arch Intern Med 162, 10011006.
13Muraki, S, Yamamoto, S, Ishibashi, H, Horiuchi, T, Hosoi, T, Suzuki, T, Orimo, H & Nakamura, K (2003) Green tea drinking is associated with increased bone mineral density. J Bone Miner Res 18, Suppl. 2, S241.
14Vestergaard, P, Herman, AP, Gram, J et al. . (2001) Evaluation of methods for prediction of bone mineral density by clinical and biochemical variables in perimenopausal women. Maturitas 40, 211220.
15Chen, Z, Pettinger, MB, Ritenbaugh, C, LaCroix, AZ, Robbins, J, Caan, BJ, Barad, DH & Hakim, IA (2003) Habitual tea consumption and risk of osteoporosis: a prospective study in the women's health initiative observational cohort. Am J Epidemiol 158, 772781.
16Chen, Z, Pettinger, MB, Hakim, LA, LaCroix, AZ, Robbins, J, Caan, BJ, Barad, DH & Ritenbaugh, C (2002) Does tea drinking affect bone density and risk of fractures among US post-menopausal women with different states of hormone replacement therapy? Results from the observational study in the women's health initiative. J Bone Miner Res 17, SA278.
17Grynpas, MD, Chachra, D & Limeback, H (2000) The action of fluoride on bone. In The Osteoporosis Primer, pp. 318–330 [Henderson, JE and Goltzman, D, editors]. Cambridge, UK: Cambridge University Press.
18Whitford, GM (1996) The Metabolism and Toxicity of Fluoride, 2nd ed. Basel and London: Karger.
19Fung, KF, Zhang, ZQ, Wong, JWC & Wong, MH (1999) Fluoride contents in tea and soil from tea plantations and the release of fluoride into tea liquor during infusion. Environ Pollut 104, 197205.
20Duckworth, SC & Duckworth, R (1978) The ingestion of fluoride in tea. Br Dent J 145, 368370.
21Hallberg, L, Sandström, B & Agget, PJ (1993) Iron, zinc and other trace elements. In Human Nutrition and Dietetics, 9th ed., pp. 174207 [Garrow, JS and James, WPT, editors]. Edinburgh: Churchill Livingston.
22Cao, J, Zhao, Y, Liu, J, Xirao, R, Danzeng, S, Daji, D & Yan, Y (2003) Brick tea fluoride as a main source of adult fluorosis. Food Chem Toxicol 41, 535542.
23Zhang, M, Shimmura, T, Nishino, H, Bi, LF, Kajita, E, Nagata, M, Nagase, H, Wang, HB, Aratani, T & Kagamimori, S (2003) Influence of fluoride concentration in drinking water and brick-tea water on bone mass in healthy Inner Mongolian young women. Bone 32, S186.
24Cao, J, Zhao, Y & Liu, J (2001) Prevention of brick tea fluorosis in rats with low-fluoride brick tea on laboratory observation. Food Chem Toxicol 39, 615619.
25Whyte, MP, Essmyer, K, Gannon, FH & Reinus, WR (2005) Skeletal fluorosis and instant tea. Am J Med 118, 78–82.
26Dufresne, CJ & Farnworth, ER (2001) A review of latest research findings on the health promotion properties of tea. J Nutr Biochem 12, 404421.
27Delaissé, J-M, Eeckhout, Y & Vaes, G (1986) Inhibition of bone resorption in culture by (+)-catechin. Biochem Pharmacol 35, 30913094.
28Park, H, Ko, S, Kim, J & Kim, S (2003) Effects of green tea extracts and polyphenols on the proliferation and activity of bone cells. J Bone Miner Res 18, Suppl. 2, S342.
29Nakagawa, H, Wachi, M, Woo, J-T, Kato, M, Kasai, S, Takahashi, F, Lee, I-S & Nagai, K (2002) Fenton reaction is primarily involved in a mechanism of ( − )-epigallocatechin-3-gallate to induce osteoclastic cell death. Biochem Biophys Res Comm 292, 94101.
30Choi, E-M & Hwang, J-K (2003) Effects of (+)-catechin on the function of osteoblastic cells. Biol Pharm Bull 26, 523526.
31Choi, J-H, Rhee, I-K, Park, K-Y, Park, K-Y, Kim, J-K & Rhee, S-J (2003) Action of green tea catechin on bone metabolic disorder in chronic cadmium-poisoned rats. Life Sci 73, 1479–1489.
32Takita, H, Kikuchi, M, Sato, Y & Kuboki, Y (2002) Inhibition of BMP-induced ectopic bone formation by an antiangiogenic agent (epigallocatechin 3-gallate). Connect Tissue Res 43, 520523.
33Rassi, CM, Lieberherr, M, Chaumaz, G, Pointillart, A & Cournot, G (2005) Modulation of osteoclastogenesis in porcine bone marrow cultures by quercetin and rutin. Cell Tissue Res 319, 383393.
34Wattel, A, Kamel, S, Mentaverri, R, Lorget, F, Prouilet, C, Petit, J-P, Fardelonne, P & Brazier, M (2003) Potent inhibitory effect of naturally occurring flavonoids quercetin and kaempferol on in vitro osteoclastic bone resorption. Biochem Pharmacol 65, 35–42.
35Notoya, M, Tsukamoto, Y, Nishimura, H, Woo, J-T, Nagai, K, Lee, I-S & Hagiwara, H (2004) Quercetin, a flavonoid, inhibits the proliferation, differentiation, and mineralization of osteoblasts in vitro. Eur J Pharmacol 485, 89–96.
36Horcajada-Molteni, M-N, Crespy, V, Coxam, V, Davicco, M-J, Rémésy, C & Barlet, J-P (2000) Rutin inhibits ovarectomy-induced osteopenia in rats. J Bone Miner Res 15, 22512258.
37Park, YH, Han, D-W, Suh, H, Ryu, GH, Hyon, S-H, Cho, BK & Park, J-C (2003) Protective effects of green tea polyphenol against reactive oxygen species-induced oxidative stress in cultured rat calvarial osteoblast. Cell Biol Toxicol 19, 325–337.
38Yano, K, Heilbrun, LK, Wasnich, RD, Hankin, JH & Vogel, JM (1985) The relationship between diet and bone mineral content of multiple skeletal sites in elderly Japanese-American men and women living in Hawaii. Am J Clin Nutr 42, 877888.
39Kiel, DP, Felson, DT, Hannan, MT, Anderson, JJ & Wilson, PW (1990) Caffeine and the risk of hip fracture: the Framingham study. Am J Epidemiol 132, 675684.
40Massey, LK (1991) Perspectives caffeine and bone: directions for research. J Bone Miner Res 6, 1149–1151.
41Nawrot, P, Jordan, S, Eastwood, J, Rotstein, J, Hugenholtz, A & Feeley, M (2003) Effects of caffeine on human health. Food Addit Contam 20, 1–30.
42Johansson, C, Mellström, D, Lerner, U & Österberg, T (1992) Coffee drinking: a minor risk factor for bone loss and fractures. Age Ageing 21, 20–26.
43Lloyd, T, Rollings, N, Eggli, DF, Kieselhorst, K & Chinchilli, VM (1997) Dietary caffeine intake and bone status of post-menopausal women. Am J Clin Nutr 65, 18261830.
44Conlisk, AJ & Galuska, DA (2000) Is caffeine associated with bone mineral density in young adult women? Prev Med 31, 562–568.
45Cooper, G, Atkinson, EJ, Wahner, HW, O'Fallon, WM, Riggs, BL, Judd, HL & Melton, LJ (1992) Is caffeine consumption a risk factor for osteoporosis? J Bone Miner Res 7, 465471.
46Rapuri, PB, Gallagher, JC, Kinyamu, HK & Ryschon, KL (2001) Caffeine intake increases the rate of bone loss in elderly women and interacts with vitamin D receptor genotypes. Am J Clin Nutr 74, 694700.
47Bergman, EA, Sherrard, DJ & Massey, LK (1987) Effects of dietary caffeine on calcium-metabolism and bone turnover in adult women. Fed Proc 46, 632.
48Harris, S & Dawson-Hughes, B (1994) Caffeine and bone loss in healthy post-menopausal women. J Bone Miner Res 8, S261.
49Ilich, JZ, Brownbill, RA, Tamborini, L & Crncevic-Orlic, Z (2002) To drink or not to drink: how are alcohol, caffeine and past smoking related to bone mineral density in elderly women? J Am Coll Nutr 21, 536–544.
50Glynn, NW, Meilahn, EN, Charron, M, Anderson, SJ, Kuller, LH & Cauley, JA (1995) Determinants of bone mineral density in older men. J Bone Miner Res 10, 17691777.
51Hannan, MT, Felson, DT, Dawson-Hughes, B, Tucker, KL, Cupples, LA, Wilson, PWF & Kiel, DP (2000) Risk factors for longitudinal bone loss in elderly men and women: The Framingham osteoporosis study. J Bone Miner Res 15, 710720.
52Rico, H, Canal, ML, Mañas, P, Lavado, JM, Costa, C & Pedera, JD (2002) Effects of caffeine, vitamin D, and other nutrients on quantitative phalangeal bone ultrasound in post-menopausal women. Nutrition 18, 189–193.
53New, SA, Bolton-Smith, C, Grubb, DA & Reid, DM (1997) Nutritional influences on bone mineral density: a cross-sectional study in premenopausal women. Am J Clin Nutr 65, 18311839.
54Barger-Lux, MJ & Heaney, RP (1995) Caffeine and the calcium economy revisited. Osteoporos Int 5, 97102.
55Ferrini, RL & Barrett-Connor, E (1996) Caffeine intake and endogenous sex steroids levels in post-menopausal women: The Rancho Bernardo study. Am J Epidemiol 144, 642644.
56Heaney, RP & Rafferty, K (2001) Carbonated beverages and urinary calcium excretion. Am J Clin Nutr 74, 343–347.
57Yeh, JK & Aloia, JF (1986) Differential effect of caffeine administration on calcium and vitamin D metabolism in young and adult rats. J Bone Miner Res 1, 251–258.
58Chen, X & Whitford, GM (1999) Effects of caffeine on fluoride, calcium and phosphorus metabolism and calcified tissues in the rat. Arch Oral Biol 44, 33–39.
59Sakamoto, W, Nishihira, J, Fujie, K, Iizuka, T, Handa, H, Ozaki, M & Yukawa, S (2001) Effect of coffee consumption on bone metabolism. Bone 28, 332–336.
60García-Contreras, F, Paniagua, R, Avila-Díaz, M, Cabrera-Muñoz, L, Martínez-Muñiz, I, Foyo-Niembro, E & Amato, D (2000) Cola beverage consumption induces bone mineralisation reduction in ovariectomized rats. Arch Med Res 31, 360365.
61Heaney, RP (2002) Effects of caffeine on bone and the calcium economy. Food Chem Toxicol 40, 12631270.
62Massey, LK (2001) Is caffeine a risk factor for bone loss in the elderly? Am J Clin Nutr 74, 569570.
63Steinmetz, KA & Potter, JD (1996) Vegetables, fruit and cancer prevention: a review. J Am Diet Assoc 96, 10271039.
64Tylavsky, FA, Holliday, K, Danish, R, Womack, C, Norwood, J & Carbone, L (2004) Fruit and vegetable intakes are an independent predictor of bone size in early pubertal children. Am J Clin Nutr 79, 311317.
65Whiting, SJ, Vatanparast, H, Baxter-Jones, A, Faulkner, RA, Mirwald, R & Bailey, DA (2004) Factors that affect bone mineral accrual in the adolescent growth spurt. J Nutr 134, 696S700S.
66McGartland, CP, Robson, PJ, Murray, LJ, Cran, GW, Savage, MJ, Watkins, DC, Rooney, MM & Boreham, CA (2004) Fruit and vegetable consumption and bone mineral density: the Northern Ireland young hearts project. Am J Clin Nutr 80, 10191023.
67Chen, Y, Ho, SC, Lee, R, Lam, S & Woo, J (2001) Fruit intake is associated with better bone mass among Hong Kong Chinese early postmenopausal women. J Bone Miner Res 16, S386.
68Tucker, KL, Chen, H, Hannan, MT, Cupples, LA, Wilson, PWF, Felson, D & Kiel, DP (2002) Bone mineral density and dietary patterns in older adults: the Framingham osteoporosis study. Am J Clin Nutr 76, 245–252.
69Tucker, KL, Hannan, MT, Chen, H, Cupples, LA, Wilson, PWF & Kiel, DP (1999) Potassium, magnesium, and fruit and vegetable intakes are associated with greater bone mineral density in elderly men and women. Am J Clin Nutr 69, 727736.
70Kaptoge, S, Welch, A, McTaggart, A, Mulligan, A, Dalzell, N, Day, NE, Bingham, S, Khaw, K-T & Reeve, J (2003) Effects of dietary nutrients and food groups on bone loss from the proximal femur in men and women in the 7th and 8th decades of age. Osteoporos Int 14, 418–428.
71Macdonald, HM, New, SA, Golden, MHN, Campbell, MK & Reid, DM (2004) Nutritional associations with bone loss during the menopausal transition: evidence of a beneficial effect of calcium, alcohol, and fruit and vegetable nutrients and of a detrimental effect of fatty acids. Am J Clin Nutr 79, 155–165.
72New, SA, Robins, SP, Campbell, MK, Martin, JC, Garton, MJ, Bolton-Smith, C, Grubb, DA, Lee, SJ & Reid, DM (2000) Dietary influences on bone mass and bone metabolism: further evidence of a positive link between fruit and vegetable consumption and bone health? Am J Clin Nutr 71, 142–151.
73Tucker, KL, Hannan, MT & Kiel, DP (2001) The acid-base hypothesis: diet and bone in the Framingham osteoporosis study. Eur J Nutr 40, 231–237.
74New, SA (2002) The role of the skeleton in acid-base homeostasis. Proc Nutr Soc 61, 151164.
75Mühlbauer, RC, Lozano, A & Reinli, A (2002) Onion and a mixture of vegetables, salads, and herbs affect bone resorption in the rat by a mechanism independent of their base excess. J Bone Miner Res 17, 12301236.
76Mühlbauer, RC & Li, F (1999) Effect of vegetables on bone metabolism. Nature 401, 343–344.
77Mühlbauer, RC, Lozano, A, Reinli, A & Wetli, H (2003) Various selected vegetables, fruits, mushrooms and red wine residue inhibit bone resorption in rats. J Nutr 133, 35923597.
78Arjmandi, BH, Khalil, DA, Lucas, EA, Georgis, A, Stoecker, BJ, Hardin, C, Payton, ME & Wild, RA (2002) Dried plums improve indices of bone formation in post-menopausal women. J Womens Health and Gend Based Med 11, 61–68.
79Chiba, H, Uehara, M, Wu, J, Wang, X, Masuyama, R, Suzuki, K, Kanazawa, K & Ishimi, Y (2003) Hesperidin, a citrus flavonoid, inhibits bone loss and decreases serum and hepatic lipids in ovariectomized mice. J Nutr 133, 18921897.
80Setchell, KDR & Lydeking-Olsen, E (2003) Dietary phyto-oestrogens and their effect on bone: evidence from in vitro and in vivo, human observational, and dietary intervention studies. Am J Clin Nutr 78, 593S609S.
81Branca, F (2003) Dietary phyto-oestrogens and bone health. Proc Nutr Soc 62, 877887.
82Draper, CR, Edel, MJ, Dick, IM, Randall, AG, Martin, GB & Prince, RL (1997) Phytoestrogens reduce bone loss and bone resorption in oophorectomized rats. J Nutr 127, 17951799.
83Fanti, P, Monier-Faugere, MC, Geng, Z, Schmidt, J, Morris, PE, Cohen, D & Malluche, HH (1998) The phytoestrogen genistein reduces bone loss in short-term ovariectomized rats. Osteoporos Int 8, 274–281.
84Lee, Y-B, Lee, HJ, Kim, KS, Le, J-Y, Nam, SY, Cheon, S-H & Sohn, H-S (2004) Evaluation of the preventative effect of isoflavone extract on bone loss in ovariectomized rats. Biosci Biotechnol Biochem 68, 1040–1045.
85Deyhim, F, Stoecker, BJ, Brusewitz, GH & Arjmandi, BH (2003) The effects of estrogen depletion and isoflavones on bone metabolism in rats. Nutr Res 23, 123130.
86Atkinson, C, Compston, JE, Day, NE, Dowsett, M & Bingham, SA (2004) The effects of phytoestrogen isoflavones on bone density in women: a double-blind, randomized, placebo-controlled trial. Am J Clin Nutr 79, 326–333.
87Chen, Y-M, Ho, SC, Lam, SSH, Ho, SSS & Woo, JLF (2003) Soy isoflavones have a favorable effect on bone loss in Chinese postmenopausal women with lower bone mass: a double-blind, randomized, controlled trial. J Clin Endocrinol Metab 88, 47404747.
88Kreijkamp-Kaspers, S, Kok, L, Grobbee, DE, de Haan, EHF, Aleman, A, Lampe, JW & van der Schouw, YT (2004) Effect of soy protein containing isoflavones on cognitive function, bone mineral density, and plasma lipids in postmenopausal women: a randomized controlled trial. JAMA 292, 65–74.
89Melis, GB, Paoletti, AM & Cagnacci, A (1996) Ipriflavone prevents bone loss in post-menopausal women. Menopause 3, 27–32.
90Maugeri, D, Panebianco, P, Russo, MS et al. . (1994) Ipriflavone-treatment of senile osteoporosis – results of a multicenter, double-blind clinical-trial of 2 years. Arch Gerontol Geriatr 19, 253–263.
91Yamaguchi, M (2002) Isoflavone and bone metabolism: its cellular mechanism and preventative role in bone loss. J Health Sci 48, 209–222.
92Brouns, F & Vermeer, C (2000) Functional food ingredients for reducing the risks of osteoporosis. Trends Food Sci Technol 11, 22–33.
93Wattanapenpaiboon, N, Lukito, W, Wahlqvist, ML & Strauss, BJG (2003) Dietary carotenoid intake as a predictor of bone mineral density. Asia Pac J Clin Nutr 12, 467473.
94Peterson, J, Dwyer, J, Bhagwat, S, Haytowitz, D, Holden, J, Eldridge, AL, Beecher, G & Aladesanmi, J (2005) Major flavonoids in dry tea. J Food Comp Anal 18, 487–501.
95Astill, C, Birch, MR, Dacombe, C, Humphrey, PG & Martin, PT (2001) Factors affecting the caffeine and polyphenol contents of black and green tea infusions. J Agric Food Chem 49, 53405347.
96Clifford, MN (1999) Chlorogenic acids and other cinnamates – nature, occurrence and dietary burden. J Sci Food Agric 79, 362372.
97Nebesny, E & Budryn, G (2003) Antioxidative activity of green and roasted coffee beans as influenced by convection and microwave roasting methods and content of certain compounds. Eur Food Res Technol 217, 157–163.
98Debry, G (1994) Coffee and Health. Paris: John Libbey Eurotext.
99Pena, A, Lino, C & Silveira, MIN (2005) Survey of caffeine levels in retail beverages in Portugal. Food Addit Contam 22, 91–96.

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed