Skip to main content Accessibility help
×
×
Home

Cognitive tests used in chronic adult human randomised controlled trial micronutrient and phytochemical intervention studies

  • Anna L. Macready (a1), Laurie T. Butler (a1), Orla B. Kennedy (a2), Judi A. Ellis (a1), Claire M. Williams (a1) and Jeremy P. E. Spencer (a2)...

Abstract

In recent years there has been a rapid growth of interest in exploring the relationship between nutritional therapies and the maintenance of cognitive function in adulthood. Emerging evidence reveals an increasingly complex picture with respect to the benefits of various food constituents on learning, memory and psychomotor function in adults. However, to date, there has been little consensus in human studies on the range of cognitive domains to be tested or the particular tests to be employed. To illustrate the potential difficulties that this poses, we conducted a systematic review of existing human adult randomised controlled trial (RCT) studies that have investigated the effects of 24 d to 36 months of supplementation with flavonoids and micronutrients on cognitive performance. There were thirty-nine studies employing a total of 121 different cognitive tasks that met the criteria for inclusion. Results showed that less than half of these studies reported positive effects of treatment, with some important cognitive domains either under-represented or not explored at all. Although there was some evidence of sensitivity to nutritional supplementation in a number of domains (for example, executive function, spatial working memory), interpretation is currently difficult given the prevailing ‘scattergun approach’ for selecting cognitive tests. Specifically, the practice means that it is often difficult to distinguish between a boundary condition for a particular nutrient and a lack of task sensitivity. We argue that for significant future progress to be made, researchers need to pay much closer attention to existing human RCT and animal data, as well as to more basic issues surrounding task sensitivity, statistical power and type I error.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Cognitive tests used in chronic adult human randomised controlled trial micronutrient and phytochemical intervention studies
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Cognitive tests used in chronic adult human randomised controlled trial micronutrient and phytochemical intervention studies
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Cognitive tests used in chronic adult human randomised controlled trial micronutrient and phytochemical intervention studies
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Dr Laurie T. Butler, fax +44 118 9316715, email l.t.butler@reading.ac.uk

References

Hide All
1World Health Organization (2007) Medium-term strategic plan 2008–2013 and proposed programme budget 2008–2009. Geneva: WHO.
2Knapp, M, Prince, M, Albanese, E, et al. (2007) Dementia UK – A Report into the Prevalence and Cost of Dementia. Prepared by the Personal Social Services Research Unit (PCSSRU) at the London School of Economics and Institute of Psychiatry at King's College London for the Alzheimer's Society. London: Alzheimer's Society.
3Wimo, A, Winblad, B & Jönsson, L (2007) An estimate of the total worldwide societal costs of dementia in 2005. Alzheimers Dement 3, 8191.
4Morris, MC, Evans, DA, Bienias, JL, et al. . (2002) Vitamin E and cognitive decline in older persons. Arch Neurol 59, 11251132.
5Perkins, AJ, Hendrie, HC, Callahan, CM, et al. . (1999) Association of antioxidants with memory in a multiethnic elderly sample using the Third National Health and Nutrition Examination Survey. Am J Epidemiol 150, 3744.
6de Lau, LML, Refsum, H, Smith, AD, et al. . (2007) Plasma folate concentration and cognitive performance: Rotterdam scan study. Am J Clin Nutr 86, 728734.
7Feng, L, Ng, TP, Chuah, L, et al. . (2006) Homocysteine, folate, and vitamin B-12 and cognitive performance in older Chinese adults: findings from the Singapore Longitudinal Ageing Study. Am J Clin Nutr 84, 15061512.
8Letenneur, L, Proust-Lima, C, Le Gouge, A, et al. . (2007) Flavonoid intake and cognitive decline over a 10-year period. Am J Epidemiol 165, 13641371.
9Galli, RL, Shukitt-Hale, B, Youdim, KA, et al. . (2002) Fruit polyphenolics and brain aging – nutritional interventions targeting age-related neuronal and behavioral deficits. Ann N Y Acad Sci 959, 128132.
10Joseph, JA, Shukitt-Hale, B, Denisova, NA, et al. . (1999) Reversals of age-related declines in neuronal signal transduction, cognitive, and motor behavioral deficits with blueberry, spinach, or strawberry dietary supplementation. J Neurosci 19, 81148121.
11Joseph, JA, Shukitt-Hale, B, Denisova, NA, et al. . (1998) Long-term dietary strawberry, spinach, or vitamin E supplementation retards the onset of age-related neuronal signal-transduction and cognitive behavioral deficits. J Neurosci 18, 80478055.
12Barros, D, Amaral, OB, Izquierdo, I, et al. . (2006) Behavioral and genoprotective effects of Vaccinium berries intake in mice. Pharmacol Biochem Behav 84, 229234.
13Cho, J, Kang, JS, Long, PH, et al. . (2003) Antioxidant and memory enhancing effects of purple sweet potato anthocyanin and Cordyceps mushroom extract. Arch Pharm Res 26, 821825.
14Lau, FC, Shukitt-Hale, B & Joseph, JA (2005) The beneficial effects of fruit polyphenols on brain aging. Neurobiol Aging 26, S128S132.
15Ramirez, MR, Izquierdo, I, Raseira, MDB, et al. . (2005) Effect of lyophilised Vaccinium berries on memory, anxiety and locomotion in adult rats. Pharmacol Res 52, 457462.
16Shukitt-Hale, B, Carey, A, Simon, L, et al. . (2006) Effects of Concord grape juice on cognitive and motor deficits in aging. Nutrition 22, 295302.
17Jia, X, McNeill, G & Avenell, A (2008) Does taking vitamin, mineral and fatty acid supplements prevent cognitive decline? A systematic review of randomized controlled trials. J Hum Nutr Diet 21, 317.
18Macready, AL, Kennedy, OB, Ellis, JA, et al. . (2009) Flavonoids and cognitive function: a review of human randomized controlled trial studies and recommendations for future studies. Genes Nutr 4, 227242.
19File, SE, Hartley, DE, Elsabagh, S, et al. . (2005) Cognitive improvement after 6 weeks of soy supplements in postmenopausal women is limited to frontal lobe function. Menopause 12, 193201.
20Gleason, CE, Carlsson, CM, Barnet, JH, et al. . (2009) A preliminary study of the safety, feasibility and cognitive efficacy of soy isoflavone supplements in older men and women. Age Ageing 38, 8693.
21File, SE, Jarrett, N, Fluck, E, et al. . (2001) Eating soya improves human memory. Psychopharmacologia 157, 430436.
22Duffy, R, Wiseman, H & File, SE (2003) Improved cognitive function in postmenopausal women after 12 weeks of consumption of a soya extract containing isoflavones. Pharmacol Biochem Behav 75, 721729.
23Le Bars, PL, Velasco, FM, Ferguson, JM, et al. . (2002) Influence of the severity of cognitive impairment on the effect of the Ginkgo biloba extract EGb 761® in Alzheimer's disease. Neuropsychobiology 45, 1926.
24Ho, SC, Chan, ASY, Ho, YP, et al. . (2007) Effects of soy isoflavone supplementation on cognitive function in Chinese postmenopausal women: a double-blind, randomized, controlled trial. Menopause 14, 489499.
25Basaria, S, Wisniewski, A, Dupree, K, et al. . (2009) Effect of high-dose isoflavones on cognition, quality of life, androgens, and lipoprotein in post-menopausal women. J Endocrinol Invest 32, 150155.
26Elsabagh, S, Hartley, DE, Ali, O, et al. . (2005) Differential cognitive effects of Ginkgo biloba after acute and chronic treatment in healthy young volunteers. Psychopharmacology 179, 437446.
27Fournier, LR, Ryan, BTA, Robison, LM, et al. . (2007) The effects of soy milk and isoflavone supplements on cognitive performance in healthy, postmenopausal women. J Nutr Health Aging 11, 155164.
28Kreijkamp-Kaspers, S, Kok, L, Grobbee, DE, et al. . (2004) Effect of soy protein containing isoflavones on cognitive function, bone mineral density, and plasma lipids in postmenopausal women – a randomized controlled trial. JAMA 292, 6574.
29van Dongen, MC, van Rossum, E, Kessels, AG, et al. . (2000) The efficacy of ginkgo for elderly people with dementia and age-associated memory impairment: new results of a randomized clinical trial. J Am Geriatr Soc 48, 11831194.
30Salthouse, TA (1990) Working memory as a processing resource in cognitive aging. Dev Rev 10, 101124.
31Waters, GS & Caplan, D (2003) The reliability and stability of verbal working memory measures. Behav Res Methods Instrum Comput 35, 550564.
32Burgess, PW (1997) Theory and methodology in executive function research. In Methodology of Frontal and Executive Function, pp. 81116 [Rabbitt, P, editor]. Hove, UK: Psychology Press.
33Rugg, MD & Henson, RNA (2002) Episodic memory retrieval: an (event-related) functional neuroimaging perspective. In The Cognitive Neuroscience of Memory Encoding and Retrieval, pp. 337 [Parker, AE, Wilding, EL and Bussey, T, editors]. Hove, UK: Psychology Press.
34Miyake, A, Friedman, NP, Emerson, MJ, et al. . (2000) The unity and diversity of executive functions and their contributions to complex ‘frontal lobe’ tasks: a latent variable analysis. Cognit Psychol 41, 49100.
35Rabbitt, P (1997) Methodology of Frontal and Executive Function. Hove, UK: Psychology Press.
36Manly, T & Robertson, IH (1997) Sustained attention and the frontal lobes. In Methodology of Frontal and Executive Function, pp. 135154 [Rabbitt, P, editor]. Hove, UK: Psychology Press.
37Phillips, LH (1997) Do ‘frontal tests’ measure executive function? Issues of assessment and evidence from fluency tests. In Methodology of Frontal and Executive Function, pp. 191214 [Rabbitt, P, editor]. Hove, UK: Psychology Press.
38Robbins, TW (2007) Shifting and stopping: fronto-striatal substrates, neurochemical modulation and clinical implications. Philos Trans R Soc Lond B Biol Sci 362, 917932.
39Costafreda, SG, Fu, CH, Lee, L, et al. . (2006) A systematic review and quantitative appraisal of fMRI studies of verbal fluency: role of the left inferior frontal gyrus. Hum Brain Mapp 27, 799810.
40D'Esposito, M (2007) From cognitive to neural models of working memory. Philos Trans R Soc Lond B Biol Sci 362, 761772.
41Curtis, CE, Rao, VY & D'Esposito, M (2004) Maintenance of spatial and motor codes during oculomotor delayed response tasks. J Neurosci 24, 39443952.
42Henson, RNA, Burgess, N & Frith, CD (2000) Recoding, storage, rehearsal and grouping in verbal short-term memory: an fMRI study. Neuropsychologia 38, 426440.
43Ranganath, C, Johnson, MK & D'Esposito, M (2003) Prefrontal activity associated with working memory and episodic long-term memory. Neuropsychologia 41, 378389.
44Voss, JL & Paller, KA (2008) Brain substrates of implicit and explicit memory: the importance of concurrently acquired neural signals of both memory types. Neuropsychologia 46, 30213029.
45Wagner, AD, Shannon, BJ, Kahn, I, et al. . (2005) Parietal lobe contributions to episodic memory retrieval. Trends Cogn Sci 9, 445453.
46Voss, JL, Reber, PJ, Mesulam, MM, et al. . (2008) Familiarity and conceptual priming engage distinct cortical networks. Cerebral Cortex 18, 17121719.
47Schott, BH, Henson, RN, Richardson-Klavehn, A, et al. . (2005) Redefining implicit and explicit memory: the functional neuroanatomy of priming, remembering, and control of retrieval. Proc Nat Acad Sci U S A 102, 12571262.
48Spiers, HJ & Maguire, EA (2007) The neuroscience of remote spatial memory: a tale of two cities. Neuroscience 149, 727.
49Simons, JS, Schölvinck, ML, Gilbert, SJ, et al. . (2006) Differential components of prospective memory?: Evidence from fMRI. Neuropsychologia 44, 13881397.
50Mink, JW (1996) The basal ganglia: focused selection and inhibition of competing motor programs. Prog Neurobiol 50, 381425.
51Shadmehr, R & Holcomb, HH (1997) Neural correlates of motor memory consolidation. Science 277, 821825.
52Attebo, K, Mitchell, P & Smith, W (1996) Visual acuity and the causes of visual loss in Australia. The Blue Mountains Eye Study. Ophthalmology 103, 357364.
53Ivers, R, Cumming, RG, Mitchell, P, et al. . (1998) Visual impairment and falls in older adults: The Blue Mountains Eye Study. J Am Geriatr Soc 46, 5864.
54Ganis, G, Thompson, WL & Kosslyn, SM (2004) Brain areas underlying visual mental imagery and visual perception: an fMRI study. Cogn Brain Res 20, 226241.
55Cattell, RB (1963) Theory of fluid and crystallized intelligence: a critical experiment. J Educ Psychol 54, 122.
56Duncan, J, Seitz, RJ, Kolodny, J, et al. . (2000) A neural basis for general intelligence. Science 289, 457460.
57Gray, JR & Thompson, PM (2004) Neurobiology of intelligence: science and ethics. Nature Rev Neurosci 5, 471482.
58Folstein, MF, Folstein, SE & McHugh, PR (1975) Mini-Mental State – practical method for grading cognitive state of patients for clinician. J Psychiatr Res 12, 189198.
59Rosen, WG, Mohs, RC & Davis, KL (1984) A new rating-scale for Alzheimer's Disease. Am J Psychiatry 141, 13561364.
60Petersen, RC, Smith, GE, Waring, SC, et al. . (1999) Mild cognitive impairment: clinical characterization and outcome. Arch Neurol 56, 303308.
61Roselli, F, Tartaglione, B, Federico, F, et al. . (2009) Rate of MMSE score change in Alzheimer's disease: influence of education and vascular risk factors. Clin Neur Neurosurg 111, 327330.
62Lezak, MD, Howieson, DB, Loring, DW, et al. (2004) Neuropsychological Assessment. New York, NY: Oxford University Press.
63Balk, E, Chung, M, Raman, G, et al. (2006) B Vitamins and Berries and Age-Related Neurodegenerative Disorders. Evidence Report/Technology Assessment no. 134. Rockville, MD: Agency for Healthcare Research and Quality.
64Levey, AS, Coresh, J, Balk, E, et al. . (2003) National Kidney Foundation practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Ann Intern Med 139, 137147.
65Cockle, SM, Haller, J, Kimber, S, et al. . (2000) The influence of multivitamins on cognitive function and mood in the elderly. Aging Mental Health 4, 339353.
66Clarke, R, Harrison, G, Richards, S, et al. . (2003) Effect of vitamins and aspirin on markers of platelet activation, oxidative stress and homocysteine in people at high risk of dementia. J Int Med 254, 6775.
67McNeill, G, Avenell, A, Campbell, MK, et al. . (2007) Effect of multivitamin and multimineral supplementation on cognitive function in men and women aged 65 years and over: a randomised controlled trial. Nutr J 6, 10.
68Wouters-Wesseling, W, Wagenaar, LW, Rozendaal, M, et al. . (2005) Effect of an enriched drink on cognitive function in frail elderly persons. J Gerontol A Biol Sci Med Sci 60, 265270.
69Wolters, M, Hickstein, M, Flintermann, A, et al. . (2005) Cognitive performance in relation to vitamin status in healthy elderly German women – the effect of 6-month multivitamin supplementation. Prev Med 41, 253259.
70Hvas, AM, Juul, S, Lauritzen, L, et al. . (2004) No effect of vitamin B-12 treatment on cognitive function and depression: a randomized placebo controlled study. J Affect Disord 81, 269273.
71Eussen, SJ, de Groot, LC, Joosten, LW, et al. . (2006) Effect of oral vitamin B-12 with or without folic acid on cognitive function in older people with mild vitamin B-12 deficiency: a randomized, placebo-controlled trial. Am J Clin Nutr 84, 361370.
72McMahon, JA, Green, TJ, Skeaff, CM, et al. . (2006) A controlled trial of homocysteine lowering and cognitive performance. N Engl J Med 354, 27642772.
73Pathansali, R, Mangoni, AA, Creagh-Brown, B, et al. . (2006) Effects of folic acid supplementation on psychomotor performance and hemorheology in healthy elderly subjects. Arch Gerontol Geriatr 43, 127137.
74Seal, EC, Metz, J, Flicker, L, et al. . (2002) A randomized, double-blind, placebo-controlled study of oral vitamin B12 supplementation in older patients with subnormal or borderline serum vitamin B12 concentrations. J Am Geriatr Soc 50, 146151.
75van Uffelen, JGZ, Chinapaw, MJM, van Mechelen, W, et al. . (2008) Walking or vitamin B for cognition in older adults with mild cognitive impairment? A randomised controlled trial. Br J Sports Med 42, 344351.
76Aisen, PS, Schneider, LS, Sano, M, et al. . (2008) High-dose B vitamin supplementation and cognitive decline in Alzheimer disease: a randomized controlled trial. JAMA 300, 17741783.
77Durga, J, van Boxtel, MPJ, Schouten, EG, et al. . (2007) Effect of 3-year folic acid supplementation on cognitive function in older adults in the FACIT trial: a randomised, double blind, controlled trial. Lancet 369, 208216.
78Lewerin, C, Matousek, M, Steen, G, et al. . (2005) Significant correlations of plasma homocysteine and serum methylmalonic acid with movement and cognitive performance in elderly subjects but no improvement from short-term vitamin therapy: a placebo-controlled randomized study. Am J Clin Nutr 81, 11551162.
79Bryan, J, Calvaresi, E & Hughes, D (2002) Short-term folate, vitamin B-12 or vitamin B-6 supplementation slightly affects memory performance but not mood in women of various ages. J Nutr 132, 13451356.
80Maylor, EA, Simpson, EEA, Secker, DL, et al. . (2006) Effects of zinc supplementation on cognitive function in healthy middle-aged and older adults: the ZENITH study. Br J Nutr 96, 752760.
81Murray-Kolb, LE & Beard, JL (2007) Iron treatment normalizes cognitive functioning in young women. Am J Clin Nutr 85, 778787.
82Kessler, H, Pajonk, FG, Bach, D, et al. . (2008) Effect of copper intake on CSF parameters in patients with mild Alzheimer's disease: a pilot phase 2 clinical trial. J Neural Transm 115, 16511659.
83Smith, A, Clark, R, Nutt, D, et al. . (1999) Anti-oxidant vitamins and mental performance of the elderly. Hum Psychopharmacol Clin Exp 14, 459471.
84Casini, ML, Marelli, G, Papaleo, E, et al. . (2006) Psychological assessment of the effects of treatment with phytoestrogens on postmenopausal women: a randomized, double-blind, crossover, placebo-controlled study. Fertil Steril 85, 972978.
85Howes, JB, Bray, K, Lorenz, L, et al. . (2004) The effects of dietary supplementation with isoflavones from red clover on cognitive function in postmenopausal women. Climacteric 7, 7077.
86Kritz-Silverstein, D, Von Muhlen, D, Barrett-Connor, E, et al. . (2003) Isoflavones and cognitive function in older women: the SOy and Postmenopausal Health In Aging (SOPHIA) Study. Menopause 10, 196202.
87Francis, ST, Head, K, Morris, PG, et al. . (2006) The effect of flavanol-rich cocoa on the fMRI response to a cognitive task in healthy young people. J Cardiovasc Pharmacol 47, S215S220.
88Mix, JA & Crews, WD (2000) An examination of the efficacy of Ginkgo biloba extract EGb 761 on the neuropsychologic functioning of cognitively intact older adults. J Altern Complement Med 6, 219229.
89Woo, J, Lau, E, Ho, SC, et al. . (2003) Comparison of Pueraria lobata with hormone replacement therapy in treating the adverse health consequences of menopause. Menopause 10, 352361.
90Ryan, J, Croft, K, Mori, T, et al. . (2008) An examination of the effects of the antioxidant Pycnogenol® on cognitive performance, serum lipid profile, endocrinological and oxidative stress biomarkers in an elderly population. J Psychopharmacol 22, 553562.
91Santos, RF, Galduróz, JC, Barbieri, A, et al. . (2003) Cognitive performance, SPECT, and blood viscosity in elderly non-demented people using Ginkgo biloba. Pharmacopsychiatry 36, 127133.
92Stough, C, Clarke, J, Lloyd, J, et al. . (2001) Neuropsychological changes after 30-day Ginkgo biloba administration in healthy participants. Int J Neuropsychopharmacol 4, 131134.
93Wesnes, KA, Simpson, P & Christmas, L (1989) A microcomputerised system for evaluating the cognitive actions of drugs in the young, elderly and demented. Eur J Clin Pharmacol 36, A38.
94Detterman, DK (1990) Computerized cognitive abilities tests for research and teaching. Micro Psychol 4, 5162.
95Reitan, RM (1992) Trail Making Test Manual for Administration and Scoring. Tucson, AZ: Reitan Neuropsychology Laboratory.
96Wechsler, D (1987) Manual for the Wechsler Memory Scale-Revised. San Antonio: The Psychological Corporation.
97Wechsler, D (1981) WAIS-R: Manual: Wechsler Adult Intelligence Scale-Revised. New York: The Psychological Corporation.
98Hoyland, A, Lawton, CL & Dye, L (2008) Acute effects of macronutrient manipulations on cognitive test performance in healthy young adults: a systematic research review. Neurosci Biobehav Rev 32, 7285.
99Williams, CM, El Mohsen, MA, Vauzour, D, et al. . (2008) Blueberry-induced changes in spatial working memory correlate with changes in hippocampal CREB phosphorylation and brain-derived neurotrophic factor (BDNF) levels. Free Radic Biol Med 45, 295305.
100Shukitt-Hale, B, Cheng, V & Joseph, JA (2009) Effects of blackberries on motor and cognitive function in aged rats. Nutr Neurosci 12, 135140.
101Devan, BD, Goad, EH & Petri, HL (1996) Dissociation of hippocampal and striatal contributions to spatial navigation in the water maze. Neurobiol Learning Mem 66, 305.
102McDonald, RJ & White, NM (1994) Parallel information processing in the water maze: evidence for independent memory systems involving dorsal striatum and hippocampus. Behav Neural Biol 61, 260270.
103Zyzak, DR, Otto, T, Eichenbaum, H, et al. . (1995) Cognitive decline associated with normal aging in rats: a neuropsychological approach. Learn Mem 2, 116.
104Andres-Lacueva, C, Shukitt-Hale, B, Galli, RL, et al. . (2005) Anthocyanins in aged blueberry-fed rats are found centrally and may enhance memory. Nutr Neurosci 8, 111120.
105Youdim, KA, Shukitt-Hale, B & Joseph, JA (2004) Flavonoids and the brain: interactions at the blood–brain barrier and their physiological effects on the central nervous system. Free Radic Biol Med 37, 16831693.
106Astur, RS, Taylor, LB, Mamelak, AN, et al. . (2002) Humans with hippocampus damage display severe spatial memory impairments in a virtual Morris water task. Behav Brain Res 132, 7784.
107Schacter, DL (1987) Implicit memory: history and current status. J Exp Psychol Learn Mem Cogn 13, 501518.
108Anderson, JR (1983) The Architecture of Cognition. Cambridge, MA: Harvard University Press.
109Poldrack, RA & Packard, MG (2003) Competition among multiple memory systems: converging evidence from animal and human brain studies. Neuropsychologia 41, 245251.
110Buckner, RL, Petersen, SE, Ojemann, JG, et al. . (1995) Functional anatomical studies of explicit and implicit memory retrieval tasks. J Neurosci 15, 1229.
111McDaniel, MA, Einstein, GO & Rendell, PG (2008) The puzzle of inconsistent declines in prospective memory: a multiprocess explanation. In Prospective Memory: Cognitive, Neuroscience, Developmental and Applied Perspectives, pp. 141160 [Kliegel, M, McDaniel, MA and Einstein, GO, editors]. New York, USA: Lawrence Erlbaum Associates.
112Burgess, PW, Quayle, A & Frith, CD (2001) Brain regions involved in prospective memory as determined by positron emission tomography. Neuropsychologia 39, 545555.
113Meikle, A, Riby, LM & Stollery, B (2004) The impact of glucose ingestion and gluco-regulatory control on cognitive performance: a comparison of younger and middle aged adults. Hum Psychopharmacol 19, 523535.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Nutrition Research Reviews
  • ISSN: 0954-4224
  • EISSN: 1475-2700
  • URL: /core/journals/nutrition-research-reviews
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed