Skip to main content Accessibility help
×
×
Home

Modulating adult neurogenesis through dietary interventions

  • Christine Heberden (a1)

Abstract

Three areas in the brain continuously generate new neurons throughout life: the subventricular zone lining the lateral ventricles, the dentate gyrus in the hippocampus and the median eminence in the hypothalamus. These areas harbour neural stem cells, which contribute to neural repair by generating daughter cells that then become functional neurons or glia. Impaired neurogenesis leads to detrimental consequences, such as depression, decline of cognitive abilities and obesity. Adult neurogenesis is a versatile process that can be modulated either positively or negatively by many effectors, external or endogenous. Diet can modify neurogenesis both ways, either directly by ways of food-borne molecules, or possibly by the modifications induced on gut microbiota composition. It is therefore critical to define dietary strategies optimal for the maintenance of the stem cell pools.

Copyright

Corresponding author

Corresponding author: Christine Heberden, email Christine.heberden@jouy.inra.fr

References

Hide All
1. Lazarini, F & Lledo, PM (2011) Is adult neurogenesis essential for olfaction? Trends Neurosci 34, 2030.
2. Conover, JC & Allen, RL (2002) The subventricular zone: new molecular and cellular developments. Cell Mol Life Sci 59, 21282135.
3. Doetsch, F (2003) A niche for adult neural stem cells. Curr Opin Genet Dev 13, 543550.
4. Jessberger, S, Toni, N, Clemenson, GD Jr, et al. (2008) Directed differentiation of hippocampal stem/progenitor cells in the adult brain. Nat Neurosci 11, 888893.
5. Menn, B, Garcia-Verdugo, JM, Yaschine, C, et al. (2006) Origin of oligodendrocytes in the subventricular zone of the adult brain. J Neurosci 26, 79077918.
6. van Praag, H, Schinder, AF, Christie, BR, et al. (2002) Functional neurogenesis in the adult hippocampus. Nature 415, 10301034.
7. Toni, N, Laplagne, DA, Zhao, C, et al. (2008) Neurons born in the adult dentate gyrus form functional synapses with target cells. Nat Neurosci 11, 901907.
8. Zhao, C, Deng, W & Gage, FH (2008) Mechanisms and functional implications of adult neurogenesis. Cell 132, 645660.
9. Borcel, E, Perez-Alvarez, L, Herrero, AI, et al. (2008) Chronic stress in adulthood followed by intermittent stress impairs spatial memory and the survival of newborn hippocampal cells in aging animals: prevention by FGL, a peptide mimetic of neural cell adhesion molecule. Behav Pharmacol 19, 4149.
10. Trouche, S, Bontempi, B, Roullet, P, et al. (2009) Recruitment of adult-generated neurons into functional hippocampal networks contributes to updating and strengthening of spatial memory. Proc Natl Acad Sci U S A 106, 59195924.
11. Encinas, JM, Vaahtokari, A & Enikolopov, G (2006) Fluoxetine targets early progenitor cells in the adult brain. Proc Natl Acad Sci U S A 103, 82338238.
12. Lee, HJ, Kim, JW, Yim, SV, et al. (2001) Fluoxetine enhances cell proliferation and prevents apoptosis in dentate gyrus of maternally separated rats. Mol Psychiatry 6, 725728.
13. Sanai, N, Nguyen, T, Ihrie, RA, et al. (2011) Corridors of migrating neurons in the human brain and their decline during infancy. Nature 478, 382386.
14. Wang, C, Liu, F, Liu, YY, et al. (2011) Identification and characterization of neuroblasts in the subventricular zone and rostral migratory stream of the adult human brain. Cell Res 21, 15341550.
15. Spalding, KL, Bergmann, O, Alkass, K, et al. (2013) Dynamics of hippocampal neurogenesis in adult humans. Cell 153, 12191227.
16. Jin, K, Sun, Y, Xie, L, et al. (2003) Directed migration of neuronal precursors into the ischemic cerebral cortex and striatum. Mol Cell Neurosci 24, 171189.
17. Liu, J, Solway, K, Messing, RO, et al. (1998) Increased neurogenesis in the dentate gyrus after transient global ischemia in gerbils. J Neurosci 18, 77687778.
18. Tan, YF, Preston, E & Wojtowicz, JM (2010) Enhanced post-ischemic neurogenesis in aging rats. Front Neurosci 4, 163.
19. Kelly, S, Bliss, TM, Shah, AK, et al. (2004) Transplanted human fetal neural stem cells survive, migrate, and differentiate in ischemic rat cerebral cortex. Proc Natl Acad Sci U S A 101, 1183911844.
20. Chintawar, S, Hourez, R, Ravella, A, et al. (2009) Grafting neural precursor cells promotes functional recovery in an SCA1 mouse model. J Neurosci 29, 1312613135.
21. Cummings, BJ, Uchida, N, Tamaki, SJ, et al. (2005) Human neural stem cells differentiate and promote locomotor recovery in spinal cord-injured mice. Proc Natl Acad Sci U S A 102, 1406914074.
22. Nori, S, Okada, Y, Yasuda, A, et al. (2011) Grafted human-induced pluripotent stem-cell-derived neurospheres promote motor functional recovery after spinal cord injury in mice. Proc Natl Acad Sci U S A 108, 1682516830.
23. Xu, Y, Tamamaki, N, Noda, T, et al. (2005) Neurogenesis in the ependymal layer of the adult rat 3rd ventricle. Exp Neurol 192, 251264.
24. Rodriguez, EM, Blazquez, JL, Pastor, FE, et al. (2005) Hypothalamic tanycytes: a key component of brain–endocrine interaction. Int Rev Cytol 247, 89164.
25. Lee, DA & Blackshaw, S (2012) Functional implications of hypothalamic neurogenesis in the adult mammalian brain. Int J Dev Neurosci 30, 615621.
26. McNay, DE, Briancon, N, Kokoeva, MV, et al. (2012) Remodeling of the arcuate nucleus energy-balance circuit is inhibited in obese mice. J Clin Invest 122, 142152.
27. Padilla, SL, Carmody, JS & Zeltser, LM (2010) Pomc-expressing progenitors give rise to antagonistic neuronal populations in hypothalamic feeding circuits. Nat Med 16, 403405.
28. Li, J, Tang, Y & Cai, D (2012) IKKβ/NF-κB disrupts adult hypothalamic neural stem cells to mediate a neurodegenerative mechanism of dietary obesity and pre-diabetes. Nat Cell Biol 14, 9991012.
29. Pierce, AA & Xu, AW (2010) De novo neurogenesis in adult hypothalamus as a compensatory mechanism to regulate energy balance. J Neurosci 30, 723730.
30. Barry, DS, Pakan, JM & McDermott, KW (2014) Radial glial cells: key organisers in CNS development. Int J Biochem Cell Biol 46, 7679.
31. Ihrie, RA & Alvarez-Buylla, A (2008) Cells in the astroglial lineage are neural stem cells. Cell Tissue Res 331, 179191.
32. Pinto, L & Gotz, M (2007) Radial glial cell heterogeneity – the source of diverse progeny in the CNS. Prog Neurobiol 83, 223.
33. Bergami, M, Rimondini, R, Santi, S, et al. (2008) Deletion of TrkB in adult progenitors alters newborn neuron integration into hippocampal circuits and increases anxiety-like behavior. Proc Natl Acad Sci U S A 105, 1557015575.
34. Sairanen, M, Lucas, G, Ernfors, P, et al. (2005) Brain-derived neurotrophic factor and antidepressant drugs have different but coordinated effects on neuronal turnover, proliferation, and survival in the adult dentate gyrus. J Neurosci 25, 10891094.
35. Li, R & Shen, Y (2005) Estrogen and brain: synthesis, function and diseases. Front Biosci 10, 257267.
36. Sicard, F, Ehrhart-Bornstein, M, Corbeil, D, et al. (2007) Age-dependent regulation of chromaffin cell proliferation by growth factors, dehydroepiandrosterone (DHEA), and DHEA sulfate. Proc Natl Acad Sci U S A 104, 20072012.
37. Denis, I, Potier, B, Vancassel, S, et al. (2013) Omega-3 fatty acids and brain resistance to ageing and stress: body of evidence and possible mechanisms. Ageing Res Rev 12, 579594.
38. Garza, JC, Guo, M, Zhang, W, et al. (2008) Leptin increases adult hippocampal neurogenesis in vivo and in vitro . J Biol Chem 283, 1823818247.
39. Han, J, Wang, B, Xiao, Z, et al. (2008) Mammalian target of rapamycin (mTOR) is involved in the neuronal differentiation of neural progenitors induced by insulin. Mol Cell Neurosci 39, 118124.
40. Li, E, Kim, Y, Kim, S, et al. (2014) Ghrelin stimulates proliferation, migration and differentiation of neural progenitors from the subventricular zone in the adult mice. Exp Neurol 252, 7584.
41. Stanic, D, Paratcha, G, Ledda, F, et al. (2008) Peptidergic influences on proliferation, migration, and placement of neural progenitors in the adult mouse forebrain. Proc Natl Acad Sci U S A 105, 36103615.
42. Parthsarathy, V & Holscher, C (2013) Chronic treatment with the GLP1 analogue liraglutide increases cell proliferation and differentiation into neurons in an AD mouse model. PLOS ONE 8, e58784.
43. Larsen, C & Grattan, D (2010) Prolactin-induced mitogenesis in the subventricular zone of the maternal brain during early pregnancy is essential for normal postpartum behavorial responses in the mother. Endocrinology 151, 38053814.
44. Galvao, RP, Garcia-Verdugo, JM & Alvarez-Buylla, A (2008) Brain-derived neurotrophic factor signaling does not stimulate subventricular zone neurogenesis in adult mice and rats. J Neurosci 28, 1336813383.
45. Bondolfi, L, Ermini, F, Long, JM, et al. (2004) Impact of age and caloric restriction on neurogenesis in the dentate gyrus of C57BL/6 mice. Neurobiol Aging 25, 333340.
46. Kuhn, HG, Dickinson-Anson, H & Gage, FH (1996) Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J Neurosci 16, 20272033.
47. Zhang, G, Li, J, Purkayastha, S, et al. (2013) Hypothalamic programming of systemic ageing involving IKK-β, NF-κB and GnRH. Nature 497, 211216.
48. Aoki, H, Kimoto, K, Hori, N, et al. (2005) Cell proliferation in the dentate gyrus of rat hippocampus is inhibited by soft diet feeding. Gerontology 51, 369374.
49. Nose-Ishibashi, K, Watahiki, J, Yamada, K, et al. (2014) Soft-diet feeding after weaning affects behavior in mice: potential increase in vulnerability to mental disorders. Neuroscience 263, 257268.
50. Canto, C & Auwerx, J (2009) Caloric restriction, SIRT1 and longevity. Trends Endocrinol Metab 20, 325331.
51. Pijl, H (2012) Longevity. The allostatic load of dietary restriction. Physiol Behav 106, 5157.
52. Ruetenik, A & Barrientos, A (2015) Dietary restriction, mitochondrial function and aging: from yeast to humans. Biochim Biophys Acta 1847, 14341447.
53. Lee, J, Duan, W, Long, JM, et al. (2000) Dietary restriction increases the number of newly generated neural cells, and induces BDNF expression, in the dentate gyrus of rats. J Mol Neurosci 15, 99108.
54. Lee, J, Duan, W & Mattson, MP (2002) Evidence that brain-derived neurotrophic factor is required for basal neurogenesis and mediates, in part, the enhancement of neurogenesis by dietary restriction in the hippocampus of adult mice. J Neurochem 82, 13671375.
55. Van der Borght, K, Köhnke, R, Göransson, N, et al. (2011) Reduced neurogenesis in the rat hippocampus following high fructose consumption. Regul Pept 167, 2630.
56. Lindqvist, A, Mohapel, P, Bouter, B, et al. (2006) High-fat diet impairs hippocampal neurogenesis in male rats. Eur J Neurol 13, 13851388.
57. Rivera, P, Romero-Zerbo, Y, Pavon, FJ, et al. (2011) Obesity-dependent cannabinoid modulation of proliferation in adult neurogenic regions. Eur J Neurosci 33, 15771586.
58. Yon, MA, Mauger, SL & Pickavance, LC (2013) Relationships between dietary macronutrients and adult neurogenesis in the regulation of energy metabolism. Br J Nutr 109, 15731589.
59. Lee, D, Bedont, J, Pak, T, et al. (2012) Tanycytes of the hypothalamic median eminence form a diet-responsive neurogenic niche. in Nat Neurosci 15, 700702.
60. Lee, DA, Yoo, S, Pak, T, et al. (2014) Dietary and sex-specific factors regulate hypothalamic neurogenesis in young adult mice. Front Neurosci 8, 157.
61. Tozuka, Y, Kumon, M, Wada, E, et al. (2010) Maternal obesity impairs hippocampal BDNF production and spatial learning performance in young mouse offspring. Neurochem Int 57, 235247.
62. Jacka, FN, Cherbuin, N, Anstey, KJ, et al. (2015) Western diet is associated with a smaller hippocampus: a longitudinal investigation. BMC Med 13, 215.
63. Rendeiro, C, Guerreiro, JD, Williams, CM, et al. (2012) Flavonoids as modulators of memory and learning: molecular interactions resulting in behavioural effects. Proc Nutr Soc 71, 246262.
64. Lee, S, Kim, DH, Lee, DH, et al. (2010) Oroxylin A, a flavonoid, stimulates adult neurogenesis in the hippocampal dentate gyrus region of mice. Neurochem Res 35, 17251732.
65. Okuyama, S, Minami, S, Shimada, N, et al. (2013) Anti-inflammatory and neuroprotective effects of auraptene, a citrus coumarin, following cerebral global ischemia in mice. Eur J Pharmacol 699, 118123.
66. Okuyama, S, Shimada, N, Kaji, M, et al. (2012) Heptamethoxyflavone, a citrus flavonoid, enhances brain-derived neurotrophic factor production and neurogenesis in the hippocampus following cerebral global ischemia in mice. Neurosci Lett 528, 190195.
67. Oh, SB, Park, HR, Jang, YJ, et al. (2013) Baicalein attenuates impaired hippocampal neurogenesis and the neurocognitive deficits induced by γ-ray radiation. Br J Pharmacol 168, 421431.
68. Nakajima, K, Niisato, N & Marunaka, Y (2011) Quercetin stimulates NGF-induced neurite outgrowth in PC12 cells via activation of Na+/K+/2Cl cotransporter. Cell Physiol Biochem 28, 147156.
69. Oberbauer, E, Urmann, C, Steffenhagen, C, et al. (2013) Chroman-like cyclic prenylflavonoids promote neuronal differentiation and neurite outgrowth and are neuroprotective. J Nutr Biochem 24, 19531962.
70. Madhyastha, S, Sekhar, S & Rao, G (2013) Resveratrol improves postnatal hippocampal neurogenesis and brain derived neurotrophic factor in prenatally stressed rats. Int J Dev Neurosci 31, 580585.
71. Moriya, J, Chen, R, Yamakawa, J, et al. (2011) Resveratrol improves hippocampal atrophy in chronic fatigue mice by enhancing neurogenesis and inhibiting apoptosis of granular cells. Biol Pharm Bull 34, 354359.
72. Kim, SJ, Son, TG, Park, HR, et al. (2008) Curcumin stimulates proliferation of embryonic neural progenitor cells and neurogenesis in the adult hippocampus. J Biol Chem 283, 1449714505.
73. Dong, S, Zeng, Q, Mitchell, ES, et al. (2012) Curcumin enhances neurogenesis and cognition in aged rats: implications for transcriptional interactions related to growth and synaptic plasticity. PLOS ONE 7, e31211.
74. Wang, YF, Zu, JN, Li, J, et al. (2014) Curcumin promotes the spinal cord repair via inhibition of glial scar formation and inflammation. Neurosci Lett 560, 5156.
75. Coti Bertrand, P, O’Kusky, JR & Innis, SM (2006) Maternal dietary (n-3) fatty acid deficiency alters neurogenesis in the embryonic rat brain. J Nutr 136, 15701575.
76. Latour, A, Grintal, B, Champeil-Potokar, G, et al. (2013) Omega-3 fatty acids deficiency aggravates glutamatergic synapse and astroglial aging in the rat hippocampal CA1. Aging Cell 12, 7684.
77. Calderon, F & Kim, HY (2004) Docosahexaenoic acid promotes neurite growth in hippocampal neurons. J Neurochem 90, 979988.
78. Cao, D, Kevala, K, Kim, J, et al. (2009) Docosahexaenoic acid promotes hippocampal neuronal development and synaptic function. J Neurochem 111, 510521.
79. He, C, Qu, X, Cui, L, et al. (2009) Improved spatial learning performance of fat-1 mice is associated with enhanced neurogenesis and neuritogenesis by docosahexaenoic acid. Proc Natl Acad Sci U S A 106, 1137011375.
80. Dyall, SC, Michael, GJ & Michael-Titus, AT (2010) Omega-3 fatty acids reverse age-related decreases in nuclear receptors and increase neurogenesis in old rats. J Neurosci Res 88, 20912102.
81. Cutuli, D, De Bartolo, P, Caporali, P, et al. (2014) n-3 Polyunsaturated fatty acids supplementation enhances hippocampal functionality in aged mice. Front Aging Neurosci 6, 220.
82. Goustard-Langelier, B, Koch, M, Lavialle, M, et al. (2013) Rat neural stem cell proliferation and differentiation are durably altered by the in utero polyunsaturated fatty acid supply. J Nutr Biochem 24, 380387.
83. Andrade, JP, Mesquita, R, Assuncao, M, et al. (2006) Effects of food restriction on synthesis and expression of brain-derived neurotrophic factor and tyrosine kinase B in dentate gyrus granule cells of adult rats. Neurosci Lett 399, 135140.
84. Gray, J, Yeo, GS, Cox, JJ, et al. (2006) Hyperphagia, severe obesity, impaired cognitive function, and hyperactivity associated with functional loss of one copy of the brain-derived neurotrophic factor (BDNF) gene. Diabetes 55, 33663371.
85. Jeon, SJ, Rhee, SY, Seo, JE, et al. (2011) Oroxylin A increases BDNF production by activation of MAPK-CREB pathway in rat primary cortical neuronal culture. Neurosci Res 69, 214222.
86. Rong, W, Wang, J, Liu, X, et al. (2012) Naringin treatment improves functional recovery by increasing BDNF and VEGF expression, inhibiting neuronal apoptosis after spinal cord injury. Neurochem Res 37, 16151623.
87. Williams, CM, El Mohsen, MA, Vauzour, D, et al. (2008) Blueberry-induced changes in spatial working memory correlate with changes in hippocampal CREB phosphorylation and brain-derived neurotrophic factor (BDNF) levels. Free Radic Biol Med 45, 295305.
88. Zhang, F, Lu, YF, Wu, Q, et al. (2012) Resveratrol promotes neurotrophic factor release from astroglia. Exp Biol Med 237, 943948.
89. Rahvar, M, Nikseresht, M, Shafiee, SM, et al. (2011) Effect of oral resveratrol on the BDNF gene expression in the hippocampus of the rat brain. Neurochem Res 36, 761765.
90. Liu, D, Xie, K, Yang, X, et al. (2014) Resveratrol reverses the effects of chronic unpredictable mild stress on behavior, serum corticosterone levels and BDNF expression in rats. Behavl Brain Res 264, 916.
91. Wang, Z, Gu, J, Wang, X, et al. (2013) Antidepressant-like activity of resveratrol treatment in the forced swim test and tail suspension test in mice: the HPA axis, BDNF expression and phosphorylation of ERK. Pharmacol Biochem Behav 112, 104110.
92. Wu, A, Ying, Z & Gomez-Pinilla, F (2004) Dietary omega-3 fatty acids normalize BDNF levels, reduce oxidative damage, and counteract learning disability after traumatic brain injury in rats. J Neurotrauma 21, 14571467.
93. Sable, PS, Kale, AA & Joshi, SR (2013) Prenatal omega 3 fatty acid supplementation to a micronutrient imbalanced diet protects brain neurotrophins in both the cortex and hippocampus in the adult rat offspring. Metabolism 62, 16071622.
94. Finkbeiner, S (2000) CREB couples neurotrophin signals to survival messages. Neuron 25, 1114.
95. Wu, A, Ying, Z & Gomez-Pinilla, F (2007) Omega-3 fatty acids supplementation restores mechanisms that maintain brain homeostasis in traumatic brain injury. J Neurotrauma 24, 15871595.
96. Kumar, TP, Antony, S, Gireesh, G, et al. (2010) Curcumin modulates dopaminergic receptor, CREB and phospholipase C gene expression in the cerebral cortex and cerebellum of streptozotocin induced diabetic rats. J Biomed Sci 17, 43.
97. Xu, Y, Ku, B, Tie, L, et al. (2006) Curcumin reverses the effects of chronic stress on behavior, the HPA axis, BDNF expression and phosphorylation of CREB. Brain Res 1122, 5664.
98. Lin, Y, Chen, F, Zhang, J, et al. (2013) Neuroprotective effect of resveratrol on ischemia/reperfusion injury in rats through TRPC6/CREB pathways. J Mol Neurosci 50, 504513.
99. Tang, Y, Purkayastha, S & Cai, D (2015) Hypothalamic microinflammation: a common basis of metabolic syndrome and aging. Trends Neurosci 38, 3644.
100. Chaudhari, N, Talwar, P, Parimisetty, A, et al. (2014) A molecular web: endoplasmic reticulum stress, inflammation, and oxidative stress. Front Cell Neurosci 8, 213.
101. Baker, RG, Hayden, MS & Ghosh, S (2011) NF-κB, inflammation, and metabolic disease. Cell Metab 13, 1122.
102. Yeung, F, Hoberg, JE, Ramsey, CS, et al. (2004) Modulation of NF-κB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J 23, 23692380.
103. Pfluger, PT, Herranz, D, Velasco-Miguel, S, et al. (2008) Sirt1 protects against high-fat diet-induced metabolic damage. Proc Natl Acad Sci U S A 105, 97939798.
104. Howitz, KT, Bitterman, KJ, Cohen, HY, et al. (2003) Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425, 191196.
105. Wood, JG, Rogina, B, Lavu, S, et al. (2004) Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 430, 686689.
106. Davis, JM, Murphy, EA, Carmichael, MD, et al. (2009) Quercetin increases brain and muscle mitochondrial biogenesis and exercise tolerance. Am J Physiol Regul Integr Comp Physiol 296, R1071R1077.
107. Su, KY, Yu, CY, Chen, YW, et al. (2014) Rutin, a flavonoid and principal component of saussurea involucrata, attenuates physical fatigue in a forced swimming mouse model. Int J Med Sci 11, 528537.
108. Prozorovski, T, Schulze-Topphoff, U, Glumm, R, et al. (2008) Sirt1 contributes critically to the redox-dependent fate of neural progenitors. Nat Cell Biol 10, 385394.
109. Michán, S, Li, Y, Chou, MM, et al. (2010) SIRT1 is essential for normal cognitive function and synaptic plasticity. J Neurosci 30, 96959707.
110. Zocchi, L & Sassone-Corsi, P (2012) SIRT1-mediated deacetylation of MeCP2 contributes to BDNF expression. Epigenetics 7, 695700.
111. Jiang, M, Wang, J, Fu, J, et al. (2012) Neuroprotective role of Sirt1 in mammalian models of Huntington’s disease through activation of multiple Sirt1 targets. Nat Med 18, 153158.
112. Ruderman, NB, Xu, XJ, Nelson, L, et al. (2010) AMPK and SIRT1: a long-standing partnership? Am J Physiol Endocrinol Metab 298, E751E760.
113. Dasgupta, B & Milbrandt, J (2009) AMP-activated protein kinase phosphorylates retinoblastoma protein to control mammalian brain development. Dev Cell 16, 256270.
114. Eid, HM, Martineau, LC, Saleem, A, et al. (2010) Stimulation of AMP-activated protein kinase and enhancement of basal glucose uptake in muscle cells by quercetin and quercetin glycosides, active principles of the antidiabetic medicinal plant Vaccinium vitis-idaea . Mol Nutr Food Res 54, 9911003.
115. Lu, J, Wu, DM, Zheng, YL, et al. (2010) Quercetin activates AMP-activated protein kinase by reducing PP2C expression protecting old mouse brain against high cholesterol-induced neurotoxicity. J Pathol 222, 199212.
116. Tong, X, Smith, KA & Pelling, JC (2012) Apigenin, a chemopreventive bioflavonoid, induces AMP-activated protein kinase activation in human keratinocytes. Mol Carcinog 51, 268279.
117. Zygmunt, K, Faubert, B, MacNeil, J, et al. (2010) Naringenin, a citrus flavonoid, increases muscle cell glucose uptake via AMPK. Biochem Biophys Res Commun 398, 178183.
118. Vingtdeux, V, Giliberto, L, Zhao, H, et al. (2010) AMP-activated protein kinase signaling activation by resveratrol modulates amyloid-β peptide metabolism. J Biol Chem 285, 91009113.
119. Jing, H, Yao, J, Liu, X, et al. (2014) Fish-oil emulsion (omega-3 polyunsaturated fatty acids) attenuates acute lung injury induced by intestinal ischemia–reperfusion through adenosine 5’-monophosphate-activated protein kinase–sirtuin1 pathway. J Surg Res 187, 252261.
120. Xue, B, Yang, Z, Wang, X, et al. (2012) Omega-3 polyunsaturated fatty acids antagonize macrophage inflammation via activation of AMPK/SIRT1 pathway. PLOS ONE 7, e45990.
121. Witte, AV, Kerti, L, Margulies, DS, et al. (2014) Effects of resveratrol on memory performance, hippocampal functional connectivity, and glucose metabolism in healthy older adults. J Neurosci 34, 78627870.
122. Huhn, S, Kharabian Masouleh, S, Stumvoll, M, et al. (2015) Components of a Mediterranean diet and their impact on cognitive functions in aging. Front Aging Neurosci 7, 132.
123. Diaz Heijtz, R, Wang, S, Anuar, F, et al. (2011) Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci U S A 108, 30473052.
124. Crumeyrolle-Arias, M, Jaglin, M, Bruneau, A, et al. (2014) Absence of the gut microbiota enhances anxiety-like behavior and neuroendocrine response to acute stress in rats. Psychoneuroendocrinology 42, 207217.
125. Clarke, G, Grenham, S, Scully, P, et al. (2013) The microbiome–gut–brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol Psychiatry 18, 666673.
126. Tremaroli, V & Backhed, F (2012) Functional interactions between the gut microbiota and host metabolism. Nature 489, 242249.
127. Turnbaugh, PJ, Hamady, M, Yatsunenko, T, et al. (2009) A core gut microbiome in obese and lean twins. Nature 457, 480484.
128. Alang, N & Kelly, CR (2015) Weight gain after fecal microbiota transplantation. Open Forum Infect Dis 2, ofv004.
129. Song, J, Kang, SM, Kim, E, et al. (2015) Adiponectin receptor-mediated signaling ameliorates cerebral cell damage and regulates the neurogenesis of neural stem cells at high glucose concentrations: an in vivo and in vitro study. Cell Death Dis 6, e1844.
130. Fernandez-Real, JM, Serino, M, Blasco, G, et al. (2015) Gut microbiota interacts with brain microstructure and function. J Clin Endocrinol Metab 100, 45054513.
131. Zhu, Y, Lin, X, Zhao, F, et al. (2015) Meat, dairy and plant proteins alter bacterial composition of rat gut bacteria. Sci Rep 5, 15220.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Nutrition Research Reviews
  • ISSN: 0954-4224
  • EISSN: 1475-2700
  • URL: /core/journals/nutrition-research-reviews
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed