Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-06-22T23:03:53.013Z Has data issue: false hasContentIssue false

Nutritional Implications Of Resistant Starch

Published online by Cambridge University Press:  14 December 2007

N.-G Asp
Affiliation:
Applied Nutrition and Food Chemistry, Chemical Center, Lund University, P.O. Box 124, S-221 00 Lund, Sweden
J. M. M. van Amelsvoort
Affiliation:
Unilever Research Laboratory, P.O. Box 114, 3130 AC Vlaardingen, TheNetherlands
J. G. A. J. Hautvast
Affiliation:
Department of Human Nutrition, Wageningen Agricultural University, Bomenweg 2, 6703 HD Wageningen, TheNetherlands
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Research Article
Copyright
Copyright © The Nutrition Society 1996

References

Abia, R., Buchanan, C. J., Saura-Calixto, F. & Eastwood, M. A. (1993). Structural changes during the retrogradation of legume starches modify the in vitro fermentation. Journal of Agricultural and Food Chemistry 41, 18561863.CrossRefGoogle Scholar
Abia, R., Fry, S. & Eastwood, M. A. (1995). A comparison of U-14C-retrograded and U-14C-gelatinised bean starch metabolism in the rat. In Asp et al. (1995), pp. 63–64.Google Scholar
Abia, R., Fry, S. & Eastwood, M. A. (1996). Metabolic transformations of 14C-retrograded and U-14C-gelatinised bean starch in rat liver and carcass. Journal of Agricultural and Food Chemistry, (in press).Google Scholar
Anderson, I. H., Levine, A. S. & Levitt, M. D. (1981). Incomplete absorption of the carbohydrate in all-purpose wheat flour. New England Journal of Medicine 304, 891892.CrossRefGoogle ScholarPubMed
Andersson, H. (1992). The ileostomy model for the study of carbohydrate digestion and carbohydrate effects on sterol excretion in man. European Journal of Clinical Nutrition 46, supplement 2, S69–S76.Google Scholar
Andersson, H. (1995). The ileostomy model -an update with emphasis on the role of a possible adaptation. In Asp et al. (1995), pp. 25–27.Google Scholar
Andersson, H., Bosaeus, I., Ellegärd, L., Hallgren, B., Hultén, L. & Magnusson, O. (1984)a. Comparison of an elemental and two polymeric diets in colectomized patients with or without intestinal resection. Clinical Nutrition 3, 183189.Google Scholar
Andersson, H., Hultén, L., Magnusson, O. & Sandström, B. (1984 b). Energy and mineral utilization from a peptide-based elemental diet and a polymeric enteral diet given to ileostomists in the early postoperative course. Joural of Parenteral and Enteral Nutrition 8, 497500.Google Scholar
Annison, G. & Topping, D. L. (1994). Nutritional role of resistant starch: chemical structure vs. physiological function. Annual Review of Nutrition 14, 297320.Google Scholar
Asp, N.-G. (1992)a. Resistant Starch. Proceedings of the 2nd plenary meeting of EURESTA: European Flair Concerted Action No. 11 (COST 911). Physiological Implications of the Consumption of Resistant Starch in Man. European Journal Of Clinical Nutrition 46, Supplement 2, 148 pp.Google Scholar
Asp, N.-G. (1992 b). Preface: Resistant Starch. Proceedings of the 2nd plenary meeting of EURESTA: European Flair Concerted Action No. 11 on Physiological Implications of the Consumption of Resistant Starch in Man. European Journal of Clinical Nutrition 46, Supplement 2, S1.Google Scholar
Asp, N.-G. & Björck, I. (1992). Resistant starch. Trends in Food Science and Technology 3, 111114.CrossRefGoogle Scholar
Asp, N.-G., Gudmand-Høyer, E., Andersen, B., Berg, N.-O. & Dahlkvist, A. (1975). Distribution of disaccharidases, alkaline phosphatase, and some intracellular enzymes along the human small intestine. Scandinavian journel of Gastroenterology 10, 647651.CrossRefGoogle ScholarPubMed
Asp, N.-G., Johansson, C.-G., Hallmer, H. & Siljeström, M. (1983). Rapid enzymatic assay of insoluble and soluble dietary fiber. Journal of Agricultural and Food Chemistry 31, 476482.CrossRefGoogle ScholarPubMed
Asp, N.-G., Tovar, J. & Bairoliya, S. (1992). Determination of resistant starch in vitro with three different methods, and in vitro with a rat model. European Journal of Clinical Nutrition 46, Supplement 2, S117S119.Google ScholarPubMed
Asp, N.-G., Van Amelsvoort, J. M. M. & Hautvast, J. G. A. J. (Eds) (1995). Proceedings of the Concluding Plenary Meeting of EURESTA, including the final reports of the working groups, 204 pp. Wageningen: EURESTA. ISBN 90-9008390-1.Google Scholar
Bach Knudsen, K. E. (1992). Methodological aspects of in vivo methods for measuring of starch digestibility: animal models. In Methodological Aspects of in vivo Methods for Measurement of Starch Digestibility. EURESTA Report, pp. 40–57 [Gudmand-Høyer, E. editor]. Vedbak, Denmark.Google Scholar
Bach Knudsen, K. E., Agergaard, N. & Olesen, H. P. (1991). Effect of caecectomy and transit time on digestibility of plant polysaccharides and of amino acids in rats. Journal of Animal Physiology and Animal Nutrition 66, 190203.Google Scholar
Bach Knudsen, K. E., Wolstrup, J. & Eggum, B. O. (1982). The nutritive value of botanically defined mill fractions of barley. 2. The influence of hind-gut microflora in rats on digestibility of protein and energy of endosperm and husk of Bomi and M-1508. Zeitschrift für Tierphysiologie, Tierernährung und Futtermittelkunde 48, 276287.CrossRefGoogle ScholarPubMed
Berggren, A. M., Björck, I. M. G., Nyman, M. G. L. & Eggum, B. O. (1995). Short-chain fatty acid content and pH in caecum of rats fed various sources of starch. Journal of the Science of Food and Agriculture 68, 241248.CrossRefGoogle Scholar
Berry, C. S. (1986). Resistant starch: formation and measurement of starch that survives exhaustive digestion with amylolytic enzymes during the determination of dietary fibre. Journal of Cereal Science 4, 301314.Google Scholar
Björck, I. & Asp, N.-G. (1992). Balance experiments in Nebacitin-treated rats. In Methodological Aspects of In Vivo Methods, for Measurement of Starch Digesribility. EURESTA Report, pp. 3539 [Gudmand-Høyer, E., editor]. Vedbæk, Denmark.Google Scholar
Björck, I., Nyman, M., Pedersen, B., Siljeström, M., Asp, N.-G. & Eggum, B. O. (1986). On the digestibility of starch in wheat bread – studies in vitro and in vivo. Journal of Cereal Science 4, 111.CrossRefGoogle Scholar
Björck, I., Nyman, M., Pedersen, B., Siljeström, M., Asp, N.-G. & Eggum, B. O. (1987). Formation of enzyme resistant starch during autoclaving of wheat starch: studies in vitro and in vivo. Journal of Cereal Science 6, 159172.Google Scholar
Björck, I. M. E. & Siljeström, M. A. (1992). In-vivo and in-vitro digestibility of starch in autoclaved pea and potato products. Journal of the Science of Food and Agriculture 58, 541553.Google Scholar
Boisen, S., Agergaard, N., Rotenberg, S. & Kragelund, Z. (1985). Effects of gut flora on intestinal activities of trypsin, chymotrypsin, elastase and amylase in growing rats fed purified diets with cellulose, pectin or sand. Zeitschrift für Tierphysiologie, Tierernäuhrung und Futtermittelkunde 53, 245254.Google Scholar
Bosaeus, I. G. & Anderson, H. B. (1987). Short-term effect of two cholesterol-lowering diets on sterol excretion in ileostomy patients. American Journal of Clinical Nutrition 45, 5459.Google Scholar
Botham, R. L., Cairns, P., Morris, W. J. & Ring, S. G. (1995). Physicochemical characterisation of resistant starch in ileostomy effluent. In Asp et al. (1995), pp. 71–72.Google Scholar
Bravo, L., Goñi, I., Fernandez-Martin, F. & Saura-Calixto, F. (1995). Effect of deep-fat frying on resistant starch formation in potato chips. In Asp et al. (1995), pp. 73–76.Google Scholar
British Nutrition Foundation (1990). Complex Carbohvdrates in Foods. The report of the British Nutrition Foundation's Task Force. London, Chapman and Hall.Google Scholar
Champ, M. (1992). Determination of resistant starch in foods and food products: interlaboratory study. European Journal of Clinical Nutrition 46, Supplement 2, S51S62.Google ScholarPubMed
Champ, M. (1995). EURESTA Working Group I: Definition, analysis, physical and chemical characterization of RS. In Asp et al. (1995), pp. 1–14.Google Scholar
Champ, M. & Faisant, N. (1995). Overview of available methods for determination of resistant starch within EURESTA. In Recent Progress in the Analysis of Dietary Fibre (Proceedings of a Workshop, 1994), pp. 4551. Copenhagen. COST 92 Physiological and Metabolic Effects of Dietary Fibre in Food.Google Scholar
Champ, M. & Faisant, N. (1996). 11-Resistant starch. Proceedings of the Third International Workshop on 'Carbohydrates as Organic Raw Materials', vol. III, pp. 189215. [van Bekkum, E., Röper, H. and Voragen, A. G. J., editors]. Wageningen. In press.Google Scholar
Christl, S. U., Murgatroyd, P. R., Gibson, G. R. & Cummings, J. H. (1992). Production, metabolism, and excretion of hydrogen in the large intestine. Gastroenterology 102, 12691277.CrossRefGoogle ScholarPubMed
Colonna, P., Leloup, V. & Buléon, A. (1992). Limiting factors of starch hydrolysis. European Journal of Clinical Nutrition 46, Supplement 2, S17S32.Google Scholar
Cummings, J. H. (1992). Report of discussion on the ileostomy model. In Methodological Aspects of In Vivo Methods for Measurement of Starch Digestibility. EURESTA Report, pp. 1922 [Gudmand-Høryer, E., editor]. Vedbæk, Denmark.Google Scholar
Cummings, J. H., Edwards, C., Gee, J., Nagengast, F. & Mathers, J. (1995). EURESTA Working Group III B: Physiological effects of resistant starch in the large bowel. In Asp et at. (1995), pp. 38–55.Google Scholar
Cummings, J. H. & Englyst, H. N. (1991). Measurement of starch fermentation in the human large intestine. Canadian Journal of Physiology and Pharmacology 69, 121129.Google Scholar
Cummings, J. H. & Macfarlane, G. T. (1991). The control and consequences of bacterial fermentation in the human colon. Journal of Applied Bacteriology 70, 443459.Google Scholar
De Deckere, E. A. M., Kloots, W. J. & Van Amelsvoort, J. M. M. (1993). Resistant starch decreases serum total cholesterol and triacylglycerol concentrations in rats. Journal of Nutrition 123, 21422151.Google ScholarPubMed
De Deckere, E. A. M., Verbeek, M. J. F., Van Amelsvoort, J. M. M., Tijburg, L. B. M. & Beynen, A. C. (1995). Resistant starch and faecal sterol excretion in rats. In Asp et al. (1995), pp. 78–81.Google Scholar
Demigné, C. & Rémétsy, C. (1982). Influence of unrefined potato starch on cecal fermentations and volatile fatty acid absorption in rats. Journal of Nutrition 112, 22272234.Google Scholar
De Roos, N., Heijnen, M.-L., De Graaf, C., Woestenenk, G. & Hobbel, E. (1995). Resistant starch has little effect on appetite, food intake and insulin secretion of healthy young men. European Journal of Clinical Nutrition 49, 532541.Google Scholar
Dysseler, P. & Hoffem, D. (1995 a). Ring test 1993–1994 for total and resistant starch determination: results and discussion. In Asp et al. (1995), pp. 87–94.Google Scholar
Dysseler, P. & Hoffem, D. (1995 b). Comparison between Englyst's method and Berry's modified method on 20 different starchy foods. In Asp et al. (1995), pp. 95–98.Google Scholar
Dysseler, P. & Hoffem, D. (1995 c). Estimation of resistant starch intake in Europe. In Asp et al. (1995), pp. 84–86.Google Scholar
Edwards, C. A., Gibson, G., Champ, M., Nagengast, F., Quehl, A., Jensen, B. B., Rumney, C. & Mathers, J. C. (1996). In vitro method for the quantification of fermentation of starch by human faecal bacteria. Journal of the Science of Food and Agriculture 71, In press.3.0.CO;2-4>CrossRefGoogle Scholar
Eerlingen, R. (1994). Formation, Structure and Properties of Enzyme Resistant Starch. PhD thesis. Katholieke Universiteit, Leuven, Belgium.Google Scholar
Eerlingen, R. C., Cillen, G. & Delcour, J. A. (1994 a). Enzyme-resistant starch. IV. Effect of endogenous lipids and added sodium dodecyl sulfate on formation of resistant starch. Cereal Chemistry 71, 170177.Google Scholar
Eerlingen, R. C., Crombez, M. & Delcour, J. A. (1993 a). Enzyme-resistant starch. I. Quantitative and qualitative influence of incubation time and temperature of autoclaved starch on resistant starch formation. Cereal Cheniistry 70, 339344.Google Scholar
Eerlingen, R. C., Deceuninck, M. & Delcour, J. A. (1993 b). Enzyme-resistant starch. II. Influence of amylose chain length on resistant starch formation. Cereal Chemistry 70, 345350.Google Scholar
Eerlingen, R. C. & Delcour, J. A. (1995). Formation, analysis, structure and properties of type III enzyme resistant starch. Journal of Cereal Science 22, 129138.CrossRefGoogle Scholar
Eerlingen, R. C., Jacobs, H. & Delcour, J. A. (1994 b). Enzyme-resistant starch. V. The impact of retrogradation of waxy maize starch on enzyme susceptibility. Cereal Chemistry 71, 351355.Google Scholar
Eerlingen, R. C., Van den Broeck, I., Delcour, J. A., Slade, L. & Levine, H. (1994 c). Enzyme-resistant starch. VI. Influence of sugars on resistant starch formation. Cereal Chemistry 71, 472476.Google Scholar
Eerlingen, R. C., Van Haesendonck, I. P., De Paepe, G. & Delcour, J. A. (1994 d). Enzyme-resistant starch. 111. The quality of straight dough breads containing varying levels of enzyme-resistant starch. Cereal Chemistry 71, 165170.Google Scholar
Eggum, B. O. (1973). A study of certain factors influencing protein utilization in rats and pigs. Report 406. Copenhagen: National Institute of Animal Science.Google Scholar
Ekwall, H., Björck, I. & Asp, N.-G. (1995). Evaluation of RS content in an animal model based on antibiotic-treated rats. In Asp et al. (1995), pp. 105–107.Google Scholar
Ekwall, H., Langkilde, A. M., Asp, N.-G., Björck, I. & Andersson, H. (1995). Digestibility of starch -amount and composition of resistant starch recovered in vivo from ileostomists and in vitro. Scandinavian Journal of Nutrition 39, 145150.Google Scholar
Ellegård, L. & Bosaeus, I. (1991). Sterol and nutrient excretion in ileostomists on prudent diets. European Journal of Clinical Nutrition 45, 451457.Google Scholar
Englyst, H. N. & Cummings, J. H. (1985). Digestion of the polysaccharides of some cereal foods in the human small intestine. American Journal of Clinical Nutrition 42, 778787.Google Scholar
Englyst, H. N. & Cummings, J. H. (1986). Digestion of the carbohydrates of banana (Musa paradisiaca sapientum) in the human small intestine. American Journal of Clinical Nutrition 44, 4250.CrossRefGoogle ScholarPubMed
Englyst, H. N. & Cummings, J. H. (1987). Digestion of polysaccharides of potato in the small intestine of man. American Journal of Clinical Nutrition 45, 423431.Google Scholar
Englyst, H. N. & Cummings, J. H. (1990). Dietary fibre and Starch: definition, classification and measurement. In Dietary Fibre Perspectives: Reviews and Bibliography, pp. 326 [Leeds, A. R., editor]. London: John Libbey.Google Scholar
Englyst, H. N., Hay, S. & Macfarlane, G. T. (1987). Polysaccharide breakdown by mixed populations of human faecal bacteria. FEMS Microbiology Ecology 95, 163171.CrossRefGoogle Scholar
Englyst, H. N. & Kingman, S. M. (1990). Dietary fibre and resistant starch. A nutritional classification of plant polysaccharides. In Dietary Fiber, pp. 4965. [Kritchevsky, D., Bonfield, C. and Anderson, J. W., editors]. New York: Plenum Press.CrossRefGoogle ScholarPubMed
Englyst, H. N., Kingman, S. M. & Cummings, J. H. (1992). Classification and measurement of nutritionally important starch fractions. European Journal of Clinical Nutrition 46, Supplement 2, S33S50.Google ScholarPubMed
Englyst, H. N. & Macfarlane, G. T. (1986). Breakdown of resistant and readily digestible starch by human gut bacteria. Journal of the Science of Food and Agriculture 37, 699706.Google Scholar
Englyst, H. N., Wiggins, H. S. & Cummings, J. H. (1982). Determination of the non-starch polysaccharides in plant foods by gas-liquid chromatography of constituent sugars as alditol acetates. Analyst 107, 307318.Google Scholar
Escarpa, A., Gonzalez, M. C., Mañas, E., García-Diz, L. & Saura-Calixto, F. (1996). Resistant starch formation: standardization of a high-pressure autoclave process. Journal of Agricultural and Food Chemistry, In press.Google Scholar
Faisant, N. (1994). [Resistant Starches, Structural Analyses of Undigested Starch at the End of the Small Intestine in Man and Physiological Effects.] Doctoral thesis, University of Paris.Google Scholar
Faisant, N., Buléon, A, Colonna, P., Molis, C., Lartigue, S., Galmiche, J. P. & Champ, M. (1995 a). Digestion of raw banana starch in the small intestine of healthy humans: structural features of resistant starch. British Journel of nutrition 73, 111123.CrossRefGoogle ScholarPubMed
Faisant, N., Champ, M., Colonna, P. & Buléon, A. (1993 a). Structural discrepancies in resistant starch obtained in vivo in humans and in vitro. Carbohydrate Polymers 21, 205209.Google Scholar
Faisant, N., Champ, M., Colonna, P. & Buléon, A. (1993 b). Structural features of starch that escapes digestion in the human small intestine. In Bioavailability '93. Proceedings of the Conference on Nutritional, Chemical and Food Processing Implications of Nutrient Availability, pp. 146150.Google Scholar
Faisant, N., Champ, M., Colonna, P., Buléon, A., Molis, C., Langkilde, A. M., Schweizer, T., Flourié, B. & Galmiche, J. P. (1993 c). Structural features of resistant starch at the end of the human small intestine. European Journal of Clinical Nutrition 47, 285296.Google Scholar
Faisant, N., Champ, M., Molis, C. & Galmiche, J.-P. (1992). The use of solid phase markers for the intubation technique in humans. In Methodological Aspects of In Vivo Methods for Measurement of Starch Digestibility. EURESTA Report, pp. 2528 [Gudmand-Hoyer, E, editor]. Denmark : Vedbæk.Google Scholar
Faisant, N., Champ, M., Ranganathan, S., Azoulay, C., Kergueris, M. F. & Krempf, M. (1994). Effects of resistent starch supplementation on postprandial metobolism in healthy subjects. Reproduction, Nutrition, Development 34, 617618 (abstract).Google Scholar
Faisant, N., Colonna, P., Buléon, A., Bouchet, B., Gallant, D. & Champ, M. (1995 a). Characteristics of starches escaping human small intestine digestion/absorption. In Asp et al. (1995), pp. 115–116.Google Scholar
Faisant, N., Gallant, D. J., Bouchet, B. & Champ, M. (1995 c). Banana starch breakdown in the human small intestine studied by electronic microscopy. European Journal of Clinical Nutrition 49, 98104.Google Scholar
Faisant, N., Planchot, F., Kozlowski, F., Pacouret, M.-P., Colonna, P. & Champ, M. (1995 d). Resistant starch determination adapted to products containing high level of resistent starch. Science des Aliments 15, 8389.Google Scholar
Faulks, R. M., Southon, S. & Livesey, G. (1989). Utilization of α-amylase (EC 3.2.1.1) resistant maize and pea(Pisum sativum) starch in the rat. British Journal of Nutrition 61, 291300.Google Scholar
Finegold, S. M., Sutter, V. L., Boyle, J. D. & Shimada, K. (1970). The normal flora of ileostomy and transverse colostomy effluents. Journal of Infectious Diseases 122, 376381.Google Scholar
Flourié, B. (1992). lntubation studies. In Methodological Aspects of In Vivo Methods for Measurement of Starch Digestibility. EURESTA Report, pp. 2324 [Gudmand-Høyer, E., editor]. Vedbæk.Google Scholar
Flourié, B., Florent, C., Jouany, J.-P., Thivend, P., Etanchaud, F. & Rambaud, J.-C. (1986). Colonic metabolism of wheat strach in healty humans. Effects on fecal outputs and clinical systoms. Gastroenterology 90, 111119.CrossRefGoogle Scholar
Flourié, B., Leblond, A., Florent, C., Rantureau, M., Bisalli, A. & Rambaud, J.-C. (1988). Starch malabsorption and breath gas excreation in healthy humans consuming low- and high-starch diets. Gastroenterology 95, 356363.CrossRefGoogle Scholar
Gallant, D. J. & Bouchet, B. (1986). Ultrastructure of the maize starch granules. Journal of Food Microstructure 5, 141155.Google Scholar
Gallant, D. J., Bouchet, B., Buléon, A. & Pérez, S. (1992). Physical characteristics of starch granules and susceptibility to enzymatic degradation. European Journel of Clinical Nutrition 46 Supplement 2, S3S16.Google Scholar
Gee, J. M., Faulks, R. M. & Johnson, I. T. (1991). Physiological effects of retrograded α-amylase-resistant cornstarch in rats. Journal of Nutrition 121, 4449.Google Scholar
Gee, J. M., Faulks, R. M., Mathers, J. C. & Edwards, C. A. (1995). Effects of resistant starch on intestinal structure and function – an animal model. In Asp et al. (1995), pp. 33–37.Google Scholar
Gibson, G. R., Cummings, J. H., Macfarlane, G. T., Allison, C., Segal, I., Vorster, H. H. & Walker, A. R. P. (1990). Alternative pathways for hydrogen disposal during fermentation in the human colon. Gut 31, 679683.Google Scholar
Goñ, I., Mañas, E., Garcia-Diz, L. & Saura-Calixto, F. (1996). Analysis of resistant starch: a method for foodsGoogle Scholar
Goodlad, J. S. & Mathers, J. C. (1992). Digestion of complex carbohydrates and large bowel fermentation in rats fed on raw and cooked peas (Pisum sativum). British Journal of Nutrition 67, 475488.Google Scholar
Granfeldt, Y. E., Drews, A. W. & Björck, I. M. E. (1993). Starch bioavailability in arepas made from ordinary or high amylose corn: concentration and gastrointestinal fate of resistant starch in rats. Journal of Nutrition 123, 16731684.Google Scholar
Granfeldt, Y., Drews, A. & Björck, I. (1995). Arepas made from high amylose corn flour produce favorably low glucose and insulin responses in healthy subjects. Journal of Nutrition 125, 459465.Google Scholar
Hansen, H. B., Østergaard, K. & Bach Knudsen, K. E. (1988). Effect of baking and staling on carbohydrate composition in rye bread and on digestibility of starch and dietary fibre in vivo. Journal of Cereal Science 7, 135144.Google Scholar
Hansen, I. (1989). Dietary Fibre: Chemical and Physical Characteristics and Effects on Digestibility of Nutrients and Energy Metabolism in the Rat. PhD thesis. Copenhagen: Royal Veterinary and Agricultural University.Google Scholar
Heijnen, M.-L. A., Deurenberg, P., Van Amelsvoort, J. M. M. & Beynen, A. C. (1995 a). The effect of resistant starch types 11 and 111 on the absorption of calcium, magnesium and phosphorus in healthy men. In Asp et al. (1995), pp. 120–121.Google Scholar
Heijnen, M.-L. A., Deurenberg, P., Van Amelsvoort, J. M. M. & Beynen, A. C. (1995 b). Replacement of digestible by resistant starch lowers diet-induced thermogenesis in healthy men. British Journal Of Nutrition 73, 423432.Google Scholar
Heijnen, M.-L. A., Van Amelsvoort, J. M. M., Deurenberg, P. & Beynen, A. C. (1996). Neither raw nor retrograded starch lowers fasting serum cholesterol levels in healthy, normolipidemic subjects. American Journal of Clinical Nutrition (in press).Google Scholar
Hildebrandt, L. A. & Marlett, J. A. (1991). Starch bioavailability in the upper gastrointestinal tract of colectomized rats. Journal of Nutrition 121, 679686.Google Scholar
Holm, J., Björck, I., Ostrowska, S., Eliasson, A.-C., Asp, N.-G., Larsson, K. & Lundquist, I. (1983). Digestibility of amylose/lipid complexes in vitro and in vivo. Starch 35, 294297.Google Scholar
Imberty, A., Chanzy, H, Pérez, S., Buléon, A. & Tran, V. (1988). The double-helical nature of the crystalline part of A-starch. Journel of Molecular Biology 201, 365378.Google Scholar
Imberty, A. & Pérez, S. (1988). A revisit to the three-dimensional structure of B-type starch. Biopolymers 27, 12051221.Google Scholar
Johansson, C.-G., Siljeström, M. & Asp, N.-G. (1984). Dietary fibre in bread and corresponding flours — formation of resistant starch during baking. Zeitschrift für Lebensmittel-Untersuchung und -Forschung 179, 2428.Google Scholar
Key, F. B. & Mathers, J. C. (1993). Complex carbohydrates digestion and large bowel fermentation in rats given wholemeal bread and cooked haricot beans (Phaseolus vulgaris) fed in mixed diets. British Journal of Nutrition 69, 497509.Google Scholar
Langkilde, A. M. & Andersson, H. (1992). Nutrients and sterols excreted in ileostomy effluents after a diet with autoclaved amylomaize or ordinary corn starch. European Journal of Clinical Nutrition 46, Supplement 2, S127.Google Scholar
Langkilde, A. M. & Andersson, H. (1995 a). Excretion of starch, other nutrients and sterols from the small bowel - an ileostomy study. In Asp et al. (1995), pp. 126–127.Google Scholar
Langkilde, A. M. & Andersson, H. (1995 b). In vivo quantification of resistant starch in EURESTA reference materials using the ileostomy model. In Asp et al. (1995), pp. 31–32.Google Scholar
Langkilde, A. M., Andersson, H., Faisant, N. & Champ, M. (1995). A comparison between the intubation technique and the ileostomy model for in vivo measurement of RS. In Asp et al. (1995), pp. 28–30.Google Scholar
Leloup, V. M., Colonna, P. & Ring, S.G. (1992). Physicochemical aspects of resistent starch. Journel of Cereal science 16, 253266.CrossRefGoogle Scholar
Levitt, M. D., Hirsh, P., Fetzer, C. A., Sheahan, M. & Levine, A. S. (1987). H2 excretion after ingestion of complex carbohydrates. Gastroenterology 92, 383389.Google Scholar
Liljeberg, H. & Björck, I. (1994). Bioavailability of starch in bread products. Postprandial responses in healthy subjects and in vitro resistant starch content. European Journal of Clinical Nutrition 48, 151163.Google Scholar
Liljeberg, H., Granfeldt, Y. & Björck, I. (1995). RS content in relation to rate of starch hydrolysis and glycaemic response. In Asp et al. (1995), pp. 128–132.Google Scholar
Livesey, G. (1992). The energy values of dietary fibre and sugar alcohols for man. Nutrition Research Reviews 5, 6184.Google Scholar
Livesey, G. (1995). EURESTA Working Group IV: Energy value of resistant starch. In Asp et al. (1995), pp. 56–62.Google Scholar
Livesey, G., Davies, I. R., Brown, J. C., Faulks, R. M. & Southon, S. (1990). Energy balance and energy values of α-amylase (EC 3.2.1.1)-resistant maize and pea (Pisum sativum) in the rat. British Journal of Nutrition 63, 467480.CrossRefGoogle Scholar
Livesey, G., Johnson, I. T., Gee, J. M., Smith, T., Lee, W., Hillan, K. A., Mayer, J. & Turner, S. C. (1993). 'Determination' of sugar alcohol and polydextrose absorption in humans by the breath hydrogen (H2) technique: the stoichiometry of hydrogen production and the interaction between carbohydrates assessed in vivo and in vitro. European Journal of Clinical Nutrition 41, 419430.Google Scholar
Macfarlane, G. T. & Englyst, H. N. (1986). Starch utilization by the human large intestinal microflora. Journal Nf Applied Bacteriology 60, 195201.Google Scholar
Mathé, D., Riottot, M., Rostaqui, N., Sacquet, E., Navarro, N., Lécuyer, B. & Lutton, C. (1993). Effect of :imylomaize starch on plasma lipoproteins of lean and obese Zucker rats. Journal of Clinical Biochemistry and Nutrition 14, 1724.Google Scholar
Mathers, J. C., Carter, S., Smith, H. & Reds, K. A. (1995). Physiological responses to raw potato starch ingestion by the rat. In Asp el al. (1995), p. 133.Google Scholar
Mathers, J. C. & Dawson, L. D. (1991). Large bowel fermentation in rats eating processed potatoes. British Journal of Nutrition 66, 313329.Google Scholar
Miithers, J. C. & Smith, H. (1993). Factors influencing caecal butyrate in rats fed raw potato starch. Proceedings the Nutrition Society 52, 316A.Google Scholar
Molis, C., Champ, M., Flourié, B., Pellier, P., Bornet, F., Colonna, P., Kozlowski, F., Rambaud, J.-C. & Galmiche, J. P. (1992). Small intestinal digestibility of processed corn starches in healthy human subjects. European Journal qf Clinical Nutrition 46, Supplement 2, S131–132.Google ScholarPubMed
Morand, C., Levrat, M. A., Besson, C., Demigné, C. & Remésy, C. (1994). Effects of a diet rich in resistant starch on hepatic lipid metabolism in the rat. Journal of Nutritional Biochemistry 5, 138144.Google Scholar
Muir, J. G., Birkett, A., Brown, I., Jones, G. & O'Dea, K. (1995). Food processing and maize variety affects amounts of starch escaping digestion in the small intestine. American Journel of Clinical Nutrition 61, 8289.Google Scholar
Muir, J. G. & O'Dea, K. (1992). Measurement of resistant starch: factors affecting the amount of starch escaping digestion in vitro. American Journal of Clinical Nutrition 56, 123127.Google Scholar
Muir, J. G. & O'Dea, K. (1993). Validation of an in vitro assay for predicting the amount of starch that escapes digestion in the small intestine of humans. American Journal of Clinical Nutrition 57, 540546.Google Scholar
Noah, L., Guillon, F., Bouchet, B., Buléon, A., Gallant, D. J., Colonna, P., Molis, C., Faisant, N., Galmiche, J. P.Champ, M. (1995). Digestion of carbohydrate components of dry beans (Phaseolus vulgaris) in healthy humans. Proceedings of the AEP conference 'Improving Production & Utilisution of Grain Legumes', Copenhagen, pp. 276277.Google Scholar
Olesen, M. & Gudmand-Høyer, E. (1995). Hydrogen and methane breath test in evaluation of resistant starch. In Asp et al. (1995), pp. 22–24.Google Scholar
Olesen, M., Rumessen, J. J. & Gudmand-Høyer, E. (1994). Intestinal transport and fermentation of resistant siarch evaluated by the H2 breath test. European Journal of Clinical Nutrition 48, 692701.Google Scholar
Olesen, M., Rumessen, J. J. & Gudmand-Høyer, E. (1995). Resistant starch has no measurable influence on gastric emptying, or on blood-cholesterol. In Asp et al. (1995), p. 144.Google Scholar
Rabe, E. & Sievert, D. (1992). Effects of baking, pasta production, and extrusion cooking on formation of resistant starch. European Journal of Clinical Nutrition 46, Supplement 2, S105S107.Google ScholarPubMed
Raben, A., Christensen, N. J., Madsen, J., Holst, J. J. & Astrup, A. (1994 a). Decreased postprandial thermogenesis and fat oxidation but increased fullness after a high-fiber meal compared with a low-fiber meal. American Journal of Clinical Nutrition 59, 13861394.Google Scholar
Raben, A., Tagliabue, A., Christensen, N. J., Madsen, J., Holst, J. J. & Astrup, A. (1994 b). Resistant starch: the efrect on postprandial glycemia, hormonal response and satiety. American Journal of Clinical Nutririon 60, 544551.Google Scholar
Ranganathan, S., Champ, M., Pechard, C., Blanchard, P., N'Guyen, M., Colonna, P. & Krempf, M. (1994). Comparative study of the acute effects of resistant starch and dietary fibers on metabolic indexes in men. American Journal of Clinical Nutrition 59, 879883.Google Scholar
Read, N. W., Al Janabi, M. N., Bates, T. E. & Barber, D. C. (1983). Effect of gastrointestinal intubation on the passage of a solid meal through the stomach and small intestine in humans. Gastroenterology 84, 15681572.Google Scholar
Rumessen, J. J. (1992). Hydrogen and methane breath tests for evaluation of resistant carbohydrates. European Journal of Clinical Nutrition 46, Supplement 2, S77S90.Google Scholar
Sacquet, E., Leprince, C. & Riottot, M. (1983). Effect of amylomaize starch on cholesterol and bile acid metabohsm in germfree (axenic) and conventional (holoxenic) rats. Reproduction, Nutrition, Development 23, 783792.Google Scholar
Saura-Calixto, F., Goñi, I., Bravo, L. & Mañas, E. (1993). Resistant starch in foods: modified method for dietary fibre residues. Journal of Food Science 58, 642643.Google Scholar
Scheppach, W., Fabian, C., Sachs, M. & Kasper, H. (1988). The effect of starch malabsorption on fecal short chain fatty acid excretion in man. Scandinavian Journal of Gastroenterology 23, 755759.Google Scholar
Schulz, A. G. M., Van Amelsvoort, J. M. M. & Beynen, A. C. (1993). Dietary native resistant starch but not retrograded resistant starch raises magnesium and calcium absorption in rats. Journal of Nutrition 123, 17241731.Google Scholar
Schweizer, T. F., Anderson, H., Langkilde, A. M., Reimann, S. & Torsdottir, I. (1990). Nutrients excreted in ileostomy effluents after consumption of mixed diets with beans or potatoes. II. Starch, dietary fibre and sugars. European Journal of Clinical Nutrition 44, 567575.Google Scholar
Shetty, P. S. & Kurpad, A. V. (1986). Increasing starch intake in the human diet increases fecal bulking. American Journal of Clinical Nutrition 43, 210212.Google Scholar
Sievert, D. & Würsch, P. (1993 a). Amylose chain association based on differential scanning calorimetry. Journal of Food Science 58, 13321334.Google Scholar
Sievert, D. & Würsch, P. (1993 b). Thermal behavior of potato amylose and enzyme-resistant starch from maize. Cereal Chemistry 70, 333338.Google Scholar
Stephen, A. M. (1991). Starch and dietary fibre: their physiological and epidemiological interrelationships. Canadian Journal of Physiology and Pharmacology 69, 116120.Google Scholar
Tagliabue, A., Raben, A., Heijnen, M.-L., Deurenberg, P., Pasquali, E. & Astrup, A. (1995 a). The effect of raw potato starch on energy expenditure and substrate osidation. American Journel of clinical Nutrition 61, 10701075.Google Scholar
Tagliabue, A., Raben, A., Heijnen, M.-L., Deurenberg, P., Pasquali, E. & Astrup, A. (1995 b). Resistant starch and postprandial energy expenditure. In Asp et al. (1995), pp. 166–168.Google Scholar
Tappy, L., Würsch, P., Randin, J. P., Felber, J. P. & Jéquier, E. (1986). Metabolic effect of pre-cooked instant preparations of bean and potato in normal and in diabetic subjects. American Journal of Clinical Nutrition 43, 3036.Google Scholar
Tomlin, J. & Read, N. W. (1990). The effect of resistant starch on colon function in humans. British Journal of Nutrition 64, 589595.Google Scholar
Tovar, J., Björck, I. M. & Asp, N.-G. (1990). Starch content and a-amylolysis rate in precooked legume flours. Journal of Agricultural and Food Chemistry 38, 18181823.Google Scholar
Tovar, J., Björck, I. M. & Asp, N.-G. (1992). Incomplete digestion of legume starches in rats: a study of precooked flours containing retrograded and physically inaccessible starch fractions. Journal of Nutrition 122, 15001507.Google Scholar
Van der Westhuizen, J., Mbizvo, M. & Jones, J. J. (1972). Unrefined carbohydrate and glucose tolerance. Lancet ii, 719.Google Scholar
Van Munster, I. P., Nagengast, F. M., Jansen, M., De Boer, H., De Haan, T. & Katan, M. B. (1995). In-vitro inhibition of cholate conversion and decrease of soluble deoxycholate by lactulose and resistant starch. In Asp et al. 1995), pp. 171–174.Google Scholar
Van Munster, I. P., Tangerman, A. & Nagengast, F. M. (1994). The effect of resistant starch on colonic fermentation, bile acid metabolism, and mucosal proliferation. Digestive Diseases and Sciences 39, 834842.Google Scholar
Verbeek, M. J. F., De Deckere, E. A. M., Tijburg, L. B. M., Van Amelsvoort, J. M. M. & Beynen, A. C. (1995). Influence of dietary retrograded starch on the metabolism of neutral steroids and bile acids in rats. Brirish Journal of Nutrition 74, 807820.Google Scholar
Wolf, M. J., Khoo, U. & Inglett, G. E. (1977). Partial digestibility of cooked amylomaize starch in humans and mice. Stärke 12, 401405.Google Scholar
Würsch, P. & Delcour, J. (1995). EURESTA Working Group II: Technology of resistant starch production. In Asp et al. (1995), pp. 15–19.Google Scholar
Wyatt, G. M. & Horn, N. (1988). Fermentation of resistant food starches by human and rat intestinal bacteria. Journal of the Science of Food and Agriculture 44, 281288.Google Scholar