Skip to main content
×
×
Home

Selected B vitamins and their possible link to the aetiology of age-related sarcopenia: relevance of UK dietary recommendations

  • N. Aytekin (a1), K. N. Mileva (a1) and A. D. Cunliffe (a1)
Abstract

The possible roles of selected B vitamins in the development and progression of sarcopenia are reviewed. Age-related declines in muscle mass and function are associated with huge and increasing costs to healthcare providers. Falls and loss of mobility and independence due to declining muscle mass/function are associated with poor clinical outcomes and their prevention and management are attractive research targets. Nutritional status appears a key modifiable and affordable intervention. There is emerging evidence of sarcopenia being the result not only of diminished anabolic activity but also of declining neurological integrity in older age, which is emerging as an important aspect of the development of age-related decline in muscle mass/function. In this connection, several B vitamins can be viewed as not only cofactors in muscle synthetic processes, but also as neurotrophic agents with involvements in both bioenergetic and trophic pathways. The B vitamins thus selected are examined with respect to their relevance to multiple aspects of neuromuscular function and evidence is considered that requirements, intakes or absorption may be altered in the elderly. In addition, the evidence base for recommended intakes (UK recommended daily allowance) is examined with particular reference to original datasets and their relevance to older individuals. It is possible that inconsistencies in the literature with respect to the nutritional management of sarcopenia may, in part at least, be the result of compromised micronutrient status in some study participants. It is suggested that in order, for example, for intervention with amino acids to be successful, underlying micronutrient deficiencies must first be addressed/eliminated.

Copyright
Corresponding author
* Corresponding author: Dr Adam Cunliffe, email cunliffa@lsbu.ac.uk
References
Hide All
1. Rosenberg, I (1989) Summary comments: epidemiological and methodological problems in determining nutritional status of older persons. Am J Clin Nutr 50, 12311233.
2. Cruz-Jentoft, AJ, Baeyens, JP, Bauer, JM, et al. (2010) Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing 39, 412423.
3. Goodpaster, BH, Park, SW, Harris, TB, et al. (2006) The loss of skeletal muscle strength, mass, and quality in older adults: The Health, Aging and Body Composition Study. J Gerontol A Biol Sci Med Sci 61, 10591064.
4. Landi, F, Calvani, R, Cesari, M, et al. (2015) Sarcopenia as the biological substrate of physical frailty. Clin Geriatr Med 31, 367374.
5. dos Santos, L, Cyrino, ES, Antunes, M, et al. (2016) Sarcopenia and physical independence in older adults: the independent and synergic role of muscle mass and muscle function. J Cachexia Sarcopenia Muscle 8, 245250.
6. Landi, F, Liperoti, R, Russo, A, et al. (2012) Sarcopenia as a risk factor for falls in elderly individuals: results from the ilSIRENTE study. Clin Nutr 31, 652658.
7. Clynes, MA, Edwards, MH, Buehring, B, et al. (2015) Definitions of sarcopenia: associations with previous falls and fracture in a population sample. Calcif Tissue Int 97, 445452.
8. Office for National Statistics (2012) Population Ageing in the United Kingdom, its Constituent Countries and the European Union. http://webarchive.nationalarchives.gov.uk/20160105160709/http://www.ons.gov.uk/ons/dcp171776_258607.pdf (accessed June 2016).
9. Paddon-Jones, D, Sheffield-Moore, M, Zhang, X-J, et al. (2004) Amino acid ingestion improves muscle protein synthesis in the young and elderly. Am J Physiol Endocrinol Metab 286, E321E328.
10. Katsanos, CS (2006) A high proportion of leucine is required for optimal stimulation of the rate of muscle protein synthesis by essential amino acids in the elderly. AJP Endocrinol Metab 291, E381E387.
11. Cuthbertson, D, Smith, K, Babraj, J, et al. (2005) Anabolic signaling deficits underlie amino acid resistance of wasting, aging muscle. FASEB J 19, 422424.
12. Kant, AK & Graubard, BI (2007) Secular trends in the association of socio-economic position with self-reported dietary attributes and biomarkers in the US population: National Health and Nutrition Examination Survey (NHANES) 1971–1975 to NHANES 1999–2002. Public Health Nutr 10, 158167.
13. Saka, B, Kaya, O, Ozturk, GB, et al. (2010) Malnutrition in the elderly and its relationship with other geriatric syndromes. Clin Nutr 29, 745748.
14. Han, SY & Kim, CS (2016) Does denture-wearing status in edentulous South Korean elderly persons affect their nutritional intakes? Gerodontology 33, 169176.
15. Kagawa, R, Ikebe, K, Inomata, C, et al. (2012) Effect of dental status and masticatory ability on decreased frequency of fruit and vegetable intake in elderly Japanese subjects. Int J Prosthodont 25, 368375.
16. Mojet, J (2003) Taste perception with age: generic or specific losses in supra-threshold intensities of five taste qualities? Chem Senses 28, 397413.
17. Kim, H-S, Oh, C & No, J-K (2016) Can nutrition label recognition or usage affect nutrition intake according to age? Nutrition 32, 5660.
18. Valuck, RJ & Ruscin, JM (2004) A case–control study on adverse effects: H2 blocker or proton pump inhibitor use and risk of vitamin B12 deficiency in older adults. J Clin Epidemiol 57, 422428.
19. Keller, HH (1993) Malnutrition in institutionalized elderly: how and why? J Am Geriatr Soc 41, 12121218.
20. Sharkey, JR, Branch, LG, Zohoori, N, et al. (2002) Inadequate nutrient intakes among homebound elderly and their correlation with individual characteristics and health-related factors. Am J Clin Nutr 76, 14351445.
21. De Groot, CPGM, Van Den Broek, T & Van Staveren, W (1999) Energy intake and micronutrient intake in elderly Europeans: seeking the minimum requirement in the SENECA study. Age Ageing 28, 469474.
22. Jamieson, CP, Obeid, OA & Powell-Tuck, J (1999) The thiamin, riboflavin and pyridoxine status of patients on emergency admission to hospital. Clin Nutr 18, 8791.
23. Marshall, TA, Stumbo, PJ, Warren, JJ, et al. (2001) Inadequate nutrient intakes are common and are associated with low diet variety in rural, community-dwelling elderly. J Nutr 131, 21922196.
24. Bartali, B, Frongillo, EA, Bandinelli, S, et al. (2006) Low nutrient intake is an essential component of frailty in older persons. J Gerontol Ser A Biol Sci Med Sci 61, 589593.
25. Semba, RD, Bartali, B, Zhou, J, et al. (2006) Low serum micronutrient concentrations predict frailty among older women living in the community. J Gerontol A Biol Sci Med Sci 61, 594599.
26. Mendonça, N, Hill, TR, Granic, A, et al. (2016) Macronutrient intake and food sources in the very old: analysis of the Newcastle 85+ Study. Br J Nutr 115, 21702180.
27. Public Health England (2014) National Diet and Nutrition Survey Results from Years 1, 2, 3 and 4 (Combined) of the Rolling Programme (2008/2009–2011/2012). London: HM Stationery Office.
28. Bates, CJ, Prentice, A, van der Pols, JC, et al. (1998) Estimation of the use of dietary supplements in the National Diet and Nutrition Survey: people aged 65 years and over. An observed paradox and a recommendation. Eur J Clin Nutr 52, 917923.
29. Fabian, E, Bogner, M, Kickinger, A, et al. (2012) Vitamin status in elderly people in relation to the use of nutritional supplements. J Nutr Health Aging 16, 206212.
30. Schwarzpaul, S, Strassburg, A, Lührmann, PM, et al. (2006) Intake of vitamin and mineral supplements in an elderly German population. Ann Nutr Metab 50, 155162.
31. Bates, B, Lennox, A, Prentice, A, et al. (2012) National Diet and Nutrition Survey: Headline Results from Years 1, 2 and 3 (Combined) of the Rolling Programme (2008/2009–2010/11). London: HM Stationery Office.
32. Bailey, AL, Maisey, S, Southon, S, et al. (1997) Relationships between micronutrient intake and biochemical indicators of nutrient adequacy in a ‘free-living’ elderly UK population. Br J Nutr 77, 225242.
33. Tanphaicitr, V (1999) Modern Nutrition in Health and Disease, 9th ed., pp. 381389 [M Shils, JA Olson, M Shike et al., editors]. Baltimore, MD: Williams & Wilkins.
34. Scheid, HE, Bennett, BA & Schweigert, BS (1953) Thiamine, riboflavin, and niacin content of organ meats. J Food Sci 18, 109112.
35. Martin, P, Singleton, C & Hiller-Sturmhöfel, S (2003) The role of thiamine deficiency in alcoholic brain disease. Alcohol Res Heal 27, 174181.
36. Thomson, AD & Pratt, OE (1992) Interaction of nutrients and alcohol: absorption, transport, utilization and metabolism. In Nutrition and Alcohol, 2nd ed., pp. 7599 [RR Watson and B Watzl, editors]. Boca Raton, FL: CRC Press.
37. Williams, RD (1940) Observations on induced thiamine (vitamin B1) deficiency in man. Arch Intern Med 66, 785799.
38. Phillips, GB, Victor, M, Adams, RD, et al. (1952) A study of the nutritional defect in Wernicke’s syndrome; the effect of a purified diet, thiamine, and other vitamins on the clinical manifestations. J Clin Invest 31, 859871.
39. Rindi, G (1996) Thiamine. In Present Knowledge in Nutrition, 7th ed., pp. 160166 [EE Ziegler and LJ Filer, editors]. Washington, DC: ILSI Press.
40. Calingasan, NY, Chun, WJ, Park, LC, et al. (1999) Oxidative stress is associated with region-specific neuronal death during thiamine deficiency. J Neuropathol Exp Neurol 58, 946958.
41. Lukienko, PI, Mel’nichenko, NG, Zverinskii, IV, et al. (2000) Antioxidant properties of thiamine. Bull Exp Biol Med 130, 874876.
42. Gibson, GE & Zhang, H (2002) Interactions of oxidative stress with thiamine homeostasis promote neurodegeneration. Neurochem Int 40, 493504.
43. World Health Organization (1999) Thiamine deficiency and its prevention and control in major emergencies. http://www.who.int/nutrition/publications/emergencies/WHO_NHD_99.13/en/ (accessed March 2015).
44. Janssen, I, Heymsfield, SB, Wang, ZM, et al. (2000) Skeletal muscle mass and distribution in 468 men and women aged 18–88 yr. J Appl Physiol 89, 8188.
45. Nogueira, FRD, Libardi, CA, Vechin, FC, et al. (2013) Comparison of maximal muscle strength of elbow flexors and knee extensors between younger and older men with the same level of daily activity. Clin Interv Aging 8, 401407.
46. Institute of Medicine (US) Standing Committee on the Scientific Evaluation of Dietary Reference Intakes and its Panel on Folate, Other B Vitamins, and Choline (1998) Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B 6 , Folate, Vitamin B 12 , Pantothenic Acid, Biotin and Choline . Washington, DC: National Academies Press.
47. Wilkinson, TJ, Hanger, HC, George, PM, et al. (2000) Is thiamine deficiency in elderly people related to age or co-morbidity? Age Ageing 29, 111116.
48. Pepersack, T, Garbusinski, J, Robberecht, J, et al. (1999) Clinical relevance of thiamine status amongst hospitalized elderly patients. Gerontology 45, 96101.
49. Zhang, G, Ding, H, Chen, H, et al. (2013) Thiamine nutritional status and depressive symptoms are inversely associated among older Chinese adults. J Nutr 143, 5358.
50. Gold, M, Hauser, RA & Chen, MF (1998) Plasma thiamine deficiency associated with Alzheimer’s disease but not Parkinson’s disease. Metab Brain Dis 13, 4353.
51. Pan, X, Fei, G, Lu, J, et al. (2016) Measurement of blood thiamine metabolites for Alzheimer’s disease diagnosis. EBioMedicine 3, 155162.
52. Aikawa, H, Watanabe, IS, Furuse, T, et al. (1984) Low energy levels in thiamine-deficient encephalopathy. J Neuropathol Exp Neurol 43, 276287.
53. Bettendorff, L, Sluse, F, Goessens, G, et al. (1995) Thiamine deficiency – induced partial necrosis and mitochondrial uncoupling in neuroblastoma cells are rapidly reversed by addition of thiamine. J Neurochem 65, 21782184.
54. Ke, Z-J, DeGiorgio, LA, Volpe, BT, et al. (2003) Reversal of thiamine deficiency-induced neurodegeneration. J Neuropathol Exp Neurol 62, 195207.
55. Todd, KG & Butterworth, RF (1999) Early microglial response in experimental thiamine deficiency: an immunohistochemical analysis. Glia 25, 190198.
56. Langlais, PJ, Anderson, G, Guo, SX, et al. (1997) Increased cerebral free radical production during thiamine deficiency. Metab Brain Dis 12, 137143.
57. Todd, KG & Butterworth, RF (1998) Evaluation of the role of NMDA-mediated excitotoxicity in the selective neuronal loss in experimental Wernicke encephalopathy. Exp Neurol 149, 130138.
58. Langlais, PJ & Mair, RG (1990) Protective effects of the glutamate antagonist MK-801 on pyrithiamine-induced lesions and amino acid changes in rat brain. J Neurosci 10, 16641674.
59. Olsen, A, Halkjaer, J, van Gils, CH, et al. (2009) Dietary intake of the water-soluble vitamins B1, B2, B6, B12 and C in 10 countries in the European Prospective Investigation into Cancer and Nutrition. Eur J Clin Nutr 63, Suppl. 4, S122S149.
60. Fabian, E & Elmadfa, I (2008) Nutritional situation of the elderly in the European Union: data of the European Nutrition and Health Report (2004). Ann Nutr Metab 52, Suppl. 1, 5761.
61. Jyväkorpi, SK, Pitkälä, KH, Puranen, TM, et al. (2015) Low protein and micronutrient intakes in heterogeneous older population samples. Arch Gerontol Geriatr 61, 464471.
62. Toffanello, ED, Inelmen, EM, Minicuci, N, et al. (2011) Ten-year trends in vitamin intake in free-living healthy elderly people: the risk of subclinical malnutrition. J Nutr Health Aging 15, 99103.
63. Tur, J, Colomer, M, Bonnin, T, et al. (2005) Dietary intake and nutritional risk among free-living elderly people in Palma de Mallorca. J Nutr Health Aging 9, 390396.
64. ter Borg, S, Verlaan, S, Hemsworth, J, et al. (2015) Micronutrient intakes and potential inadequacies of community-dwelling older adults: a systematic review. Br J Nutr 113, 11951206.
65. Lim, YS & Cho, KJ (2000) A comparative study of nutrient intakes and factors to influence on nutrient intake between low-income elderly living in urban and rural areas. J Korean Soc . Food Sci Nutr 29, 257267.
66. Lengyel, CO, Whiting, SJ & Zello, GA (2008) Nutrient inadequacies among elderly residents of long-term care facilities. Can J Diet Pract Res 69, 8288.
67. Löwik, MR, Schneijder, P, Hulshof, KF, et al. (2013) Institutionalized elderly women have lower food intake than do those living more independently (Dutch Nutrition Surveillance System). J Am Coll Nutr 11, 432440.
68. Gorelik, O, Almoznino-Sarafian, D, Feder, I, et al. (2003) Dietary intake of various nutrients in older patients with congestive heart failure. Cardiology 99, 177181.
69. Berner, YN, Stern, F, Polyak, Z, et al. (2002) Dietary intake analysis in institutionalized elderly: a focus on nutrient density. J Nutr Health Aging 6, 237242.
70. McCabe-Sellers, B, Sharkey, J & Browne, B (2005) Diuretic medication therapy use and low thiamin intake in homebound older adults. J Nutr Elder 24, 5771.
71. Wakimoto, P & Block, G (2001) Dietary intake, dietary patterns, and changes with age: an epidemiological perspective. J Gerontol A Biol Sci Med Sci 56, 6580.
72. Sette, S, Le Donne, C, Piccinelli, R, et al. (2011) The third Italian National Food Consumption Survey, INRAN-SCAI 2005-06 – part 1: nutrient intakes in Italy. Nutr Metab Cardiovasc Dis 21, 922932.
73. Elmadfa, I, Majchrzak, D, Rust, P, et al. (2001) The thiamine status of adult humans depends on carbohydrate intake. Int J Vitam Nutr Res 71, 217221.
74. Suter, PM, Haller, J, Hany, A, et al. (2000) Diuretic use: a risk for subclinical thiamine deficiency in elderly patients. J Nutr Health Aging 4, 6971.
75. Severi, S, Bedogni, G, Manzieri, AM, et al. (1997) Effects of cooking and storage methods on the micronutrient content of foods. Eur J Cancer Prev 6, Suppl. 1, S21S24.
76. UK Food Standards Agency: Expert Group on Vitamins and Minerals (2002) Revised Review of Thiamine. London: Food Standards Agency.
77. Butterworth, RF, Kril, JJ & Harper, CG (1993) Thiamine-dependent enzyme changes in the brains of alcoholics: relationship to the Wernicke–Korsakoff syndrome. Alcohol Clin Exp Res 17, 10841088.
78. Nichols, HK & Basu, TK (1994) Thiamin status of the elderly: dietary intake and thiamin pyrophosphate response. J Am Coll Nutr 13, 5761.
79. Turck, D, Bresson, J, Burlingame, B, et al. (2016) Dietary reference values for thiamin. EFSA J 14, 4653.
80. Andrade Juguan, J, Lukito, W & Schultink, W (1999) Thiamine deficiency is prevalent in a selected group of urban Indonesian elderly people. J Nutr 129, 366371.
81. Wolters, M, Hermann, S & Hahn, A (2003) B vitamin status and concentrations of homocysteine and methylmalonic acid in elderly German women. Am J Clin Nutr 78, 765772.
82. Committee on Medical Aspects of Food Policy (1991) Dietary Reference Values for Food Energy and Nutrients for the United Kingdom. Report on Health and Social Subjects, no. 41. London: HM Stationery Office.
83. Horwitt, MK, Liebert, E, Kreisler, O, et al. (1948) Investigations of Human Requirements for B-complex Vitamins. Bulletin of the National Research Council, no. 116. Washington, DC: National Academies of Sciences.
84. Die Deutsche Gesellschaft für Ernährung e. V. (DGE) (2015) Thiamin (vitamin B1) [in German]. https://www.dge.de/wissenschaft/referenzwerte/thiamin/ (accessed November 2015).
85. National Health and Medical Council (2005) Nutrient reference values for Australia and New Zealand including recommended dietary intakes: evidence appendix. https://www.nhmrc.gov.au/guidelines-publications/n35-n36-n37 (accessed March 2015).
86. Bolzetta, F, Veronese, N, De Rui, M, et al. (2015) Are the recommended dietary allowances for vitamins appropriate for elderly people? J Acad Nutr Diet 115, 17891797.
87. O’Rourke, N, Bunkner, V, Thomas, A, et al. (1990) Thiamine status of healthy and institutionalized elderly subjects: analysis of dietary and biochemical indices. Age Ageing 19, 325329.
88. Schrijver, J (1991) Biochemical markers for micronutrient status and their interpretation. In Modern Lifestyles, Lower Energy Intake and Micronutrient Status. ILSI Human Nutrition Reviews, pp. 5585 [K Pietrzik, editor]. London: Springer.
89. Kjosen, B & Seim, SH (1977) The transketolase assay of thiamine in some diseases. Am J Clin Nutr 30, 15911596.
90. Jacob, R & Swenseid, M (1996) Niacin. In Present Knowledge in Nutrition, 7th ed., pp. 185190 [EE Ziegler and L Filer, editors]. Washington, DC: ILSI Press.
91. Guse, AH (2005) Second messenger function and the structure–activity relationship of cyclic adenosine diphosphoribose (cADPR). FEBS J 272, 45904597.
92. Imai, S, Armstrong, CM, Kaeberlein, M, et al. (2000) Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403, 795800.
93. Zoratti, M & Szabò, I (1995) The mitochondrial permeability transition. Biochim Biophys Acta 1241, 139176.
94. La Piana, G, Marzulli, D, Gorgoglione, V, et al. (2005) Porin and cytochrome oxidase containing contact sites involved in the oxidation of cytosolic NADH. Arch Biochem Biophys 436, 91100.
95. Jaeschke, H, Kleinwaechter, C & Wendel, A (1992) NADH-dependent reductive stress and ferritin-bound Fe in allyl alcohol-induced lipid peroxidation in vivo: the protective effect of vitamin E. Chem Biol Interact 81, 5768.
96. Aswad, F, Kawamura, H & Dennert, G (2005) High sensitivity of CD4+CD25+ regulatory T cells to extracellular metabolites nicotinamide adenine dinucleotide and ATP: a role for P2X7 receptors. J Immunol 175, 30753083.
97. Hegyi, J, Schwartz, RA & Hegyi, V (2004) Pellagra: dermatitis, dementia, and diarrhea. Int J Dermatol 43, 15.
98. Langworthy, OR (1931) Lesions of the central nervous system characteristic of pellagra. Brain 54, 291302.
99. Zimmerman, HM (1934) Pellagra in association with chronic alcoholism. Arch Neurol Psychiatry 31, 290309.
100. Goldsmith, GA, Sarett, HP, Register, UD, et al. (1952) Studies of niacin requirement in man. I. Experimental pellagra in subjects on corn diets low in niacin and tryptophan. J Clin Invest 31, 533542.
101. Goldsmith, GA, Gibbens, J, Unglaub, WG, et al. (1956) Studies of niacin requirement in man: III. Comparative effects of diets containing lime-treated and untreated corn in the production of experimental pellagra. Am J Clin Nutr 4, 151160.
102. Sakai, K, Nakajima, T & Fukuhara, N (2006) A suspected case of alcoholic pellagra encephalopathy with marked response to niacin showing myoclonus and ataxia as chief complaints. Brain Nerve 58, 141144.
103. Terada, N, Kinoshita, K, Taguchi, S, et al. (2015) Wernicke encephalopathy and pellagra in an alcoholic and malnourished patient. BMJ Case Rep 2015, bcr2015209412.
104. Brown, TM (2010) Pellagra: an old enemy of timeless importance. Psychosomatics 51, 9397.
105. Buzina, R (1976) Early signs of niacin deficiency. Bibl Nutr Dieta 23, 8894.
106. Ronthal, M & Adler, H (1969) Motor nerve conduction velocity and the electromyograph in pellagra. South African Med J 43, 642644.
107. Sakellariou, GK, Pearson, T, Lightfoot, AP, et al. (2016) Mitochondrial ROS regulate oxidative damage and mitophagy but not age-related muscle fiber atrophy. Sci Rep 6, 33944.
108. Fomby, P & Cherlin, AJ (2011) Role of poly(ADP-ribose) polymerase 1 (PARP-1) in CVDs: the therapeutic potential of PARP inhibitors. Cardiovasc Drug Rev 72, 181204.
109. Kim, MY, Mauro, S, Gévry, N, et al. (2004) NAD+-dependent modulation of chromatin structure and transcription by nucleosome binding properties of PARP-1. Cell 119, 803814.
110. Pillai, JB, Isbatan, A, Imai, S-I, et al. (2005) Poly(ADP-ribose) polymerase-1-dependent cardiac myocyte cell death during heart failure is mediated by NAD+ depletion and reduced Sir2α deacetylase activity. J Biol Chem 280, 4312143130.
111. Alano, CC, Garnier, P, Ying, W, et al. (2010) NAD+ depletion is necessary and sufficient for poly(ADP-ribose) polymerase-1-mediated neuronal death. J Neurosci 30, 29672978.
112. Jacobson, EL, Nunbhakdi-Craig, V, Smith, DG, et al. (1992) ADP-ribose polymer metabolism: implications for human nutrition. In ADP-Ribosylation Reactions, 1st ed., pp. 153162 [G Poirer and P Moreau, editors]. New York: Academic Press.
113. Klaidman, LK, Mukherjee, SK & Adams, JD Jr (2001) Oxidative changes in brain pyridine nucleotides and neuroprotection using nicotinamide. Biochim Biophys Acta 1525, 136148.
114. Gomes, AP, Price, NL, Ling, AJY, et al. (2013) Declining NAD+ induces a pseudohypoxic state disrupting nuclear–mitochondrial communication during aging. Cell 155, 16241638.
115. Liu, D, Gharavi, R, Pitta, M, et al. (2009) Nicotinamide prevents NAD+ depletion and protects neurons against excitotoxicity and cerebral ischemia: NAD+ consumption by sirt1 may endanger energetically compromised neurons. NeuroMolecular Med 11, 2842.
116. Narayan, N, Lee, IH, Borenstein, R, et al. (2012) The NAD-dependent deacetylase SIRT2 is required for programmed necrosis. Nature 492, 199204.
117. Hall, JA, Dominy, JE, Lee, Y, et al. (2013) The sirtuin family’s role in aging and age-associated pathologies. J Clin Invest 123, 973979.
118. Skoge, RH, Dölle, C & Ziegler, M (2014) Regulation of SIRT2-dependent α-tubulin deacetylation by cellular NAD levels. DNA Repair (Amst) 23, 3338.
119. Braidy, N, Guillemin, GJ, Mansour, H, et al. (2011) Age related changes in NAD+ metabolism oxidative stress and Sirt1 activity in Wistar rats. PLoS ONE 6, e19194.
120. Massudi, H, Grant, R, Braidy, N, et al. (2012) Age-associated changes in oxidative stress and NAD+ metabolism in human tissue. PLOS ONE 7, e42357.
121. Deierlein, AL, Morland, KB, Scanlin, K, et al. (2014) Diet quality of urban older adults age 60 to 99 years: The Cardiovascular Health of Seniors and Built Environment Study. J Acad Nutr Diet 114, 279287.
122. Troesch, B, Hoeft, B, McBurney, M, et al. (2012) Dietary surveys indicate vitamin intakes below recommendations are common in representative Western countries. Br J Nutr 108, 692698.
123. Sahyoun, N (1992) Nutrition in the elderly: the Boston Nutritional Status Survey. In Nutritent Intake by the NSS Elderly Population, 1st ed., pp. 3144 [S Hartz S, IH Rosenberg and RM Russell, editors]. London: Smith-Gordon and Co. Ltd.
124. Woo, J, Ho, SC, Mak, YT, et al. (1988) Nutritional status of the water-soluble vitamins in an active Chinese elderly population in Hong Kong. Eur J Clin Nutr 42, 415424.
125. Aghdassi, E, McArthur, M, Liu, B, et al. (2007) Dietary intake of elderly living in Toronto long-term care facilities: comparison to the dietary reference intake. Rejuvenation Res 10, 301309.
126. Paulionis, L, Kane, S-L & Meckling, KA (2005) Vitamin status and cognitive function in a long-term care population. BMC Geriatr 5, 16.
127. Engelheart, S & Akner, G (2015) Dietary intake of energy, nutrients and water in elderly people living at home or in nursing home. J Nutr Health Aging 19, 265272.
128. Dhonukshe-Rutten, RAM, de Vries, JHM, de Bree, A, et al. (2009) Dietary intake and status of folate and vitamin B12 and their association with homocysteine and cardiovascular disease in European populations. Eur J Clin Nutr 63, 1830.
129. Shelnutt, KP, Kauwell, GPA, Chapman, CM, et al. (2003) Folate status response to controlled folate intake is affected by the methylenetetrahydrofolate reductase 677C→T polymorphism in young women. J Nutr 133, 41074111.
130. Gregory, J (1998) Nutritional properties and significance of vitamin glycosides. Annu Rev Nutr 18, 277296.
131. Hokwitt, MK, Harvey, CC, Rothwell, WS, et al. (1956) Tryptophan–niacin relationships in man. J Nutr 60, 143.
132. Nakagawa, I, Takahashi, T, Sasaki, A, et al. (1973) Efficiency of conversion of tryptophan to niacin in humans. J Nutr 103, 11951199.
133. Institute of Medicine (US) Standing Committee on the Scientific Evaluation of Dietary Reference Intakes and its Panel on Folate, Other B Vitamins, and Choline and Subcommittee on Upper Reference Levels of Nutrients (1998) ) Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B 6 , Folate, Vitamin B 12 , Pantothenic Acid, Biotin, and Choline . Washington, DC: National Academies Press.
134. Bender, DA (1989) Vitamin B6 requirements and recommendations. Eur J Clin Nutr 43, 289309.
135. Vogler, WR & Mingioli, ES (1965) Heme synthesis in pyridoxine-responsive anemia. N Engl J Med 273, 347353.
136. Hartvig, P, Lindner, KJ, Bjurling, P, et al. (1995) Pyridoxine effect on synthesis rate of serotonin in the monkey brain measured with positron emission tomography. J Neural Transm Gen Sect 102, 9197.
137. Lamers, Y, Williamson, J, Ralat, M, et al. (2009) Moderate dietary vitamin B-6 restriction raises plasma glycine and cystathionine concentrations while minimally affecting the rates of glycine turnover and glycine cleavage in healthy men and women. J Nutr 139, 452460.
138. Allgood, V & Cidlowski, J (1992) Vitamin B6 modulates transcriptional activation by multiple members of the steroid hormone receptor superfamily. J Biol Chem 267, 38193824.
139. Mueller, JF & Iacono, JM (1963) Effect of desoxypyridoxine-induced vitamin B6 deficiency on polyunsaturated fatty acid metabolism in human beings. Am J Clin Nutr 12, 358367.
140. Zaoui, A, Abdelghani, A, Ben Salem, H, et al. (2012) Early-onset severe isoniazid-induced motor-dominant neuropathy: a case report. East Mediterr Health J 18, 298299.
141. Vilter, RW, Mueller, JF, Glazer, HS, et al. (1953) The effect of vitamin B6 deficiency induced by desoxypyridoxine in human beings. J Lab Clin Med 42, 335357.
142. Steichen, O, Martinez-Almonya, L & de Broucker, T (2006) Isoniazid induced neuropathy: consider prevention. Rev Mal Respir 23, 157160.
143. Devadatta, S, Gangadharam, PR, Andrews, RH, et al. (1960) Peripheral neuritis due to isoniazid. Bull World Health Organ 23, 587598.
144. Schalaepfer, WW & Hager, H (1964) Ultrastructural studies of INH-induced neuropathy in rats. I. Early axonal changes. Am J Pathol 45, 209219.
145. Jacobs, JM, Miller, RH, Whittle, A, et al. (1979) Studies on the early changes in acute isoniazid neuropathy in the rat. Acta Neuropathol 47, 8592.
146. Cavanagh, JB (1967) On the pattern of change in peripheral nerves produced by isoniazid intoxication in rats. J Neurol Neurosurg Psychiatry 30, 2633.
147. Zbinden, G & Studer, A (1955) Experimental contribution to the question of isoniazid neuritis and the effects of pyridoxin on it. Z Tuberk 107, 97107.
148. Hildebrand, J, Joffroy, A & Coërs, C (1968) Myoneural changes in experimental isoniazid neuropathy. Arch Neurol 19, 6070.
149. Sampson, DA, Young, LA & Kretsch, MJ (1988) Marginal intake of vitamin B-6: effects on protein synthesis in liver, kidney and muscle of the rat. Nutr Res 8, 309319.
150. Bartali, B, Semba, RD, Frongillo, EA, et al. (2006) Low micronutrient levels as a predictor of incident disability in older women. Arch Intern Med 166, 23352340.
151. Ter Borg, S, de Groot, LCPGMPGM, Mijnarends, DM, et al. (2016) Differences in nutrient intake and biochemical nutrient status between sarcopenic and nonsarcopenic older adults – results from the Maastricht Sarcopenia Study. J Am Med Dir Assoc 17, 393401.
152. Cederholm, T, Cruz-Jentoft, AJ & Maggi, S (2013) Sarcopenia and fragility fractures. Eur J Phys Rehabil Med 49, 111117.
153. Richelson, LS, Wahner, HW, Melton, LJ, et al. (1984) Relative contributions of aging and estrogen deficiency to postmenopausal bone loss. N Engl J Med 311, 12731275.
154. Dai, Z, Wang, R, Ang, LW, Yuan, J-M, et al. (2013) Dietary B vitamin intake and risk of hip fracture: the Singapore Chinese Health Study. Osteoporos Int 24, 20492059.
155. Yazdanpanah, N, Zillikens, MC, Rivadeneira, F, et al. (2007) Effect of dietary B vitamins on BMD and risk of fracture in elderly men and women: the Rotterdam Study. Bone 41, 987994.
156. Bird, TA & Levene, CI (1982) Lysyl oxidase: evidence that pyridoxal phosphate is a cofactor. Biochem Biophys Res Commun 108, 11721180.
157. Herrmann, M, Widmann, T & Herrmann, W (2005) Homocysteine – a newly recognised risk factor for osteoporosis. Clin Chem Lab Med 43, 11111117.
158. van Wijngaarden, JP, Doets, EL, Szczecińska, A, et al. (2013) Vitamin B12, folate, homocysteine, and bone health in adults and elderly people: a systematic review with meta-analyses. J Nutr Metab 2013, 486186.
159. Fratoni, V & Brandi, ML (2015) B vitamins, homocysteine and bone health. Nutrients 7, 21762192.
160. European Food Safety Authority (EFSA) Panel on Dietetic Products, Nutrition and Allergies (2016) Scientific opinion on dietary reference values for vitamin B6 . EFSA J 14, 4485.
161. Dewolfe, J & Millan, K (2003) Dietary intake of older adults in the Kingston area. Can J Diet Pract Res 64, 1624.
162. Szponar, L & Rychlik, E (2002) Dietary intake elderly subjects in rural and urban area in Poland. Pol Merkur Lekarski 13, 490496.
163. Kant, AK & Block, G (1990) Dietary vitamin B-6 intake and food sources in the US population: NHANES II, 1976–1980. Am J Clin Nutr 52, 707716.
164. Bechthold, A, Albrecht, V, Leschik-Bonnet, E, et al. (2012) Statement: evaluation of vitamin supplies in Germany. Data on vitamin intake. Ernährungs Umschau 59, 324336.
165. Waern, RVR, Cumming, RG, Blyth, F, et al. (2015) Adequacy of nutritional intake among older men living in Sydney, Australia: findings from the Concord Health and Ageing in Men Project (CHAMP). Br J Nutr 114, 812821.
166. Power, SE, Jeffery, IB, Ross, RP, et al. (2014) Food and nutrient intake of Irish community-dwelling elderly subjects: who is at nutritional risk? J Nutr Health Aging 18, 561572.
167. Paker-Eichelkraut, HS, Bai-Habelski, JC, Overzier, S, et al. (2013) Nutritional status and related factors in elderly nursing home residents: comparative cross-sectional study in migrants and native Germans. J Nutr Gerontol Geriatr 32, 330342.
168. Buell, JS, Arsenault, LN, Scott, TM, et al. (2007) Multivitamin use and B vitamin status in a homebound elderly population. J Nutr Health Aging 11, 299303.
169. Morris, MS, Picciano, MF, Jacques, PF, et al. (2008) Plasma pyridoxal 5’-phosphate in the US population: the National Health and Nutrition Examination Survey, 2003–2004. Am J Clin Nutr 87, 14461454.
170. Kjeldby, IK, Fosnes, GS, Ligaarden, SC, et al. (2013) Vitamin B6 deficiency and diseases in elderly people – a study in nursing homes. BMC Geriatr 13, 13.
171. Bates, CJ, Pentieva, KD, Prentice, A, et al. (1999) Plasma pyridoxal phosphate and pyridoxic acid and their relationship to plasma homocysteine in a representative sample of British men and women aged 65 years and over. Br J Nutr 81, 191201.
172. Huang, YC, Yan, YY, Wong, Y, et al. (2001) Vitamin B6 intakes and status assessment of elderly men and women in Taiwan. Int J Vitam Nutr Res 71, 313318.
173. Guilland, JC, Bereksi-Reguig, B, Lequeu, B, et al. (1984) Evaluation of pyridoxine intake and pyridoxine status among aged institutionalised people. Int J Vitam Nutr Res 54, 185193.
174. Ueland, PM, Ulvik, A, Rios-Avila, L, et al. (2015) Direct and functional biomarkers of vitamin B6 status. Annu Rev Nutr 35, 3370.
175. Canham, JE, Baker, EM, Harding, RS, et al. (1969) Dietary protein – its relationship to vitamin B6 requirements and function. Ann N Y Acad Sci 166, 1629.
176. Miller, LT & Linkswiler, H (1967) Effect of protein intake on the development of abnormal tryptophan metabolism by men during vitamin B6 depletion. J Nutr 93, 5359.
177. Kelsay, J, Baysal, A & Linkswiler, H (1968) Effect of vitamin B6 depletion on the pyridoxal, pyridoxamine and pyridoxine content of the blood and urine of men. J Nutr 94, 490494.
178. Kelsay, J, Miller, LT & Linkswiler, H (1968) Effect of protein intake on the excretion of quinolinic acid and niacin metabolites by men during vitamin B6 depletion. J Nutr 94, 2731.
179. Campbell, W, Crim, M, Dallal, G, et al. (1994) Increased protein requirements in elderly people: new data and retrospective reassessments. Am J Clin Nutr 60, 501509.
180. Phillips, SM, Chevalier, S & Leidy, HJ (2016) Protein “requirements” beyond the RDA: implications for optimizing health. Appl Physiol Nutr Metab 41, 565572.
181. Meydani, SN, Ribaya-Mercado, JD, Russell, RM, et al. (1991) Vitamin B-6 deficiency impairs interleukin 2 production and lymphocyte proliferation in elderly adults. Am J Clin Nutr 53, 12751280.
182. Ribaya-Mercado, JD, Russell, RM, Sahyoun, N, et al. (1991) Vitamin B-6 requirements of elderly men and women. J Nutr 121, 10621074.
183. Williams, P (2007) Nutritional composition of red meat. Nutr Diet 64, S113S119.
184. Paiardini, A, Contestabile, R, Buckle, AM, et al. (2014) PLP-dependent enzymes. Biomed Res Int 2014, 856076.
185. Wyckoff, KF & Ganji, V (2007) Proportion of individuals with low serum vitamin B-12 concentrations without macrocytosis is higher in the post folic acid fortification period than in the pre folic acid fortification period. Am J Clin Nutr 86, 11871192.
186. Hoffbrand, AV & Jackson, BF (1993) Correction of the DNA synthesis defect in vitamin B12 deficiency by tetrahydrofolate: evidence in favour of the methyl-folate trap hypothesis as the cause of megaloblastic anaemia in vitamin B12 deficiency. Br J Haematol 83, 643647.
187. Banerjee, RV & Matthews, RG (1990) Cobalamin-dependent methionine synthase. FASEB J 4, 14501459.
188. Nijhout, HF, Reed, MC, Budu, P, et al. A mathematical model of the folate cycle: new insights into folate homeostasis. J Biol Chem 279, 5500855016.
189. Bates, CJ, Mansoor, MA, Pentieva, KD, et al. (2010) Biochemical risk indices, including plasma homocysteine, that prospectively predict mortality in older British people: the National Diet and Nutrition Survey of People Aged 65 Years and Over. Br J Nutr 104, 893899.
190. Carmel, R (2001) Folate deficiency. In Homocysteine in Health and Disease, 2nd ed., pp. 271288 [R Carmel and D Jacobsen, editors]. Cambridge: Cambridge University Press.
191. Pietrzik, K & Bronstrup, A (1998) Vitamins B12, B6 and folate as determinants of homocysteine concentration in the healthy population. Eur J Pediatr 157, 135138.
192. Zylberstein, DE, Lissner, L, Björkelund, C, et al. (2011) Midlife homocysteine and late-life dementia in women. A prospective population study. Neurobiol Aging 32, 380386.
193. Seshadri, S, Beiser, A, Selhub, J, et al. (2002) Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease. N Engl J Med 346, 476483.
194. Kado, DM, Bucur, A, Selhub, J, et al. (2002) Homocysteine levels and decline in physical function: MacArthur Studies of Successful Aging. Am J Med 113, 537542.
195. Ng, T-P, Aung, KCY, Feng, L, et al. (2012) Homocysteine, folate, vitamin B-12, and physical function in older adults: cross-sectional findings from the Singapore Longitudinal Ageing Study. Am J Clin Nutr 96, 13621368.
196. Swart, KMA, Van Schoor, NM, Heymans, MW, et al. (2013) Elevated homocysteine levels are associated with low muscle strength and functional limitations in older persons. J Nutr Health Aging 17, 578584.
197. Yang, L-K, Wong, K-C, Wu, M-Y, et al. (2007) Correlations between folate, B12, homocysteine levels, and radiological markers of neuropathology in elderly post-stroke patients. J Am Coll Nutr 26, 272278.
198. Stanojlovic, O, Hrncic, D, Rasic-Markovic, A, et al. (2011) Homocysteine: neurotoxicity and mechanisms of induced hyperexcitability. Serbian J Exp Clin Res 12, 39.
199. Bukharaeva, E, Shakirzyanova, A, Khuzakhmetova, V, et al. (2015) Homocysteine aggravates ROS-induced depression of transmitter release from motor nerve terminals: potential mechanism of peripheral impairment in motor neuron diseases associated with hyperhomocysteinemia. Front Cell Neurosci 9, 391.
200. Kruman, II, Culmsee, C, Chan, SL, et al. (2000) Homocysteine elicits a DNA damage response in neurons that promotes apoptosis and hypersensitivity to excitotoxicity. J Neurosci 20, 69206926.
201. Tasatargil, A, Dalaklioglu, S & Sadan, G (2004) Poly(ADP-ribose) polymerase inhibition prevents homocysteine-induced endothelial dysfunction in the isolated rat aorta. Pharmacology 72, 99105.
202. Zhang, X, Chen, S, Li, L, et al. (2008) Folic acid protects motor neurons against the increased homocysteine, inflammation and apoptosis in SOD1 G93A transgenic mice. Neuropharmacology 54, 11121119.
203. Rogers, LM, Pfeiffer, CM, Bailey, LB, et al. (1997) A dual-label stable-isotopic protocol is suitable for determination of folate bioavailability in humans: evaluation of urinary excretion and plasma folate kinetics of intravenous and oral doses of [13C5] and [2H2]folic acid. J Nutr 127, 23212327.
204. Wright, AJA, Finglas, PM, Dainty, JR, et al. (2005) Differential kinetic behavior and distribution for pteroylglutamic acid and reduced folates: a revised hypothesis of the primary site of PteGlu metabolism in humans. J Nutr 135, 619623.
205. Whitehead, VM, Kamen, BA & Beaulieu, D (1987) Levels of dihydrofolate reductase in livers of birds, animals, primates, and man. Cancer Drug Deliv 4, 185189.
206. Carreras, CW & Santi, DV (1995) The catalytic mechanism and structure of thymidylate synthase. Annu Rev Biochem 64, 721762.
207. Goulian, M, Bleile, B & Tseng, BY (1980) Methotrexate-induced misincorporation of uracil into DNA. Proc Natl Acad Sci U S A 77, 19561960.
208. Wickramasinghe, S & Fida, S (1994) Bone marrow cells from vitamin B12- and folate-deficient patients misincorporate uracil into DNA. Blood 83, 16561661.
209. Luzzatto, L, Falusi, AO & Joju, EA (1981) Uracil in DNA in megaloblastic anemia. N Engl J Med 305, 11561157.
210. Blount, BC, Mack, MM, Wehr, CM, et al. (1997) Folate deficiency causes uracil misincorporation into human DNA and chromosome breakage: implications for cancer and neuronal damage. Proc Natl Acad Sci U S A 94, 32903295.
211. Duthie, SJ, Narayanan, S, Blum, S, et al. (2000) Folate deficiency in vitro induces uracil misincorporation and DNA hypomethylation and inhibits DNA excision repair in immortalized normal human colon epithelial cells. Nutr Cancer 37, 245251.
212. Duthie, SJ (2000) Increased uracil misincorporation in lymphocytes from folate-deficient rats. Br J Cancer 83, 15321537.
213. Kronenberg, G, Harms, C, Sobol, RW, et al. (2008) Folate deficiency induces neurodegeneration and brain dysfunction in mice lacking uracil DNA glycosylase. J Neurosci 28, 72197230.
214. Eckart, S, Hörtnagl, H, Kronenberg, G, et al. (2013) Reduced nerve growth factor levels in stress-related brain regions of folate-deficient mice. Neuroscience 245, 129135.
215. Crott, JW, Choi, S-W, Branda, RF, et al. (2005) Accumulation of mitochondrial DNA deletions is age, tissue and folate-dependent in rats. Mutat Res Mol Mech Mutagen 570, 6370.
216. Hikida, RS, Staron, RS, Hagerman, FC, et al. (2000) Effects of high-intensity resistance training on untrained older men. II. Muscle fiber characteristics and nucleo-cytoplasmic relationships. J Gerontol 55A, B347B354.
217. Allen, DL, Monke, SR, Talmadge, RJ, et al. (1995) Plasticity of myonuclear number in hypertrophied and atrophied mammalian skeletal muscle fibers. J Appl Physiol 78, 19691976.
218. Kadi, F & Thornell, L-E (2000) Concomitant increases in myonuclear and satellite cell content in female trapezius muscle following strength training. Histochem Cell Biol 113, 99103.
219. Sinha-Hikim, I, Roth, SM, Lee, MI, et al. (2003) Testosterone-induced muscle hypertrophy is associated with an increase in satellite cell number in healthy, young men. Am J Physiol Endocrinol Metab 285, E197E205.
220. Teixeira, CE & Duarte, JA (2011) Myonuclear domain in skeletal muscle fibers. A critical review. Arch Exerc Health Dis 2, 92101.
221. Ortega, RM, Mañas, LR, Andrés, P, et al. (1996) Functional and psychic deterioration in elderly people may be aggravated by folate deficiency. J Nutr 126, 19921999.
222. Jiménez-Redondo, S, Beltrán de Miguel, B, Gavidia Banegas, J, et al. (2014) Influence of nutritional status on health-related quality of life of non-institutionalized older people. J Nutr Health Aging 18, 359364.
223. Kamphuis, MH, Geerlings, MI, Grobbee, DE, et al. (2008) Dietary intake of B6–9–12 vitamins, serum homocysteine levels and their association with depressive symptoms: the Zutphen Elderly Study. Eur J Clin Nutr 62, 939945.
224. Volkert, D, Kreuel, K, Heseker, H, et al. (2004) Energy and nutrient intake of young-old, old-old and very-old elderly in Germany. Eur J Clin Nutr 58, 11901200.
225. Morris, MC, Evans, DA, Bienias, JL, et al. (2005) Dietary folate and vitamin B12 intake and cognitive decline among community-dwelling older persons. Arch Neurol 62, 641645.
226. Ramos, MI, Allen, LH, Mungas, DM, et al. (2005) Low folate status is associated with impaired cognitive function and dementia in the Sacramento Area Latino Study on Aging. Am J Clin Nutr 82, 13461352.
227. Planells, E, Sánchez, C, Montellano, MA, et al. (2003) Vitamins B6 and B12 and folate status in an adult Mediterranean population. Eur J Clin Nutr 57, 777785.
228. Polito, A, Intorre, F, Andriollo-Sanchez, M, et al. (2005) Estimation of intake and status of vitamin A, vitamin E and folate in older European adults: the ZENITH. Eur J Clin Nutr 59, S42S47.
229. Pfeiffer, CM, Caudill, SP, Gunter, EW, et al. (2005) Biochemical indicators of B vitamin status in the US population after folic acid fortification: results from the National Health and Nutrition Examination Survey 1999–2000. Am J Clin Nutr 82, 442450.
230. O’Leary, F, Flood, VM, Petocz, P, et al. (2011) B vitamin status, dietary intake and length of stay in a sample of elderly rehabilitation patients. J Nutr Health Aging 15, 485489.
231. Dimopoulos, N, Piperi, C, Salonicioti, A, et al. (2007) Correlation of folate, vitamin B12 and homocysteine plasma levels with depression in an elderly Greek population. Clin Biochem 40, 604608.
232. Public Health England (2015) National Diet and Nutrition Survey Rolling Programme (NDNS RP). Supplementary Report: Blood Folate Results for the UK as a Whole, Scotland, Northern Ireland (Years 1 to 4 Combined) and Wales (Years 2 to 5 Combined). London: Public Health England.
233. Clarke, R, Grimley Evans, J, Schneede, J, et al. (2003) Vitamin B12 and folate deficiency in later life. Age Ageing 33, 3441.
234. Koehler, KM, Baumgartner, RN, Garry, PJ, et al. (2001) Association of folate intake and serum homocysteine in elderly persons according to vitamin supplementation and alcohol use. Am J Clin Nutr 73, 628637.
235. Lindenbaum, J, Rosenberg, IH, Wilson, PW, et al. (1994) Prevalence of cobalamin deficiency in the Framingham elderly population. Am J Clin Nutr 60, 211.
236. Finch, SA, Doyle, W, Lowe, C, et al. (1998) National Diet and Nutrition Survey: People Aged 65 Years and Over. Volume 1: Report of the Diet and Nutrition Survey. London: The Stationery Office.
237. Herbert, V (1962) Experimental nutritional folate deficiency. Trans Assoc Am Physicians 75, 307320.
238. Gailani, SD, Carey, RW, Holland, JF, et al. (1970) Studies of folate deficiency in patients with neoplastic diseases. Cancer Res 30, 327333.
239. Hoppner, K & Lampi, B (1980) Folate levels in human liver from autopsies in Canada. Am J Clin Nutr 33, 862864.
240. Cooper, BA (1978) Reassessment of folic acid requirements. In Nutrition in Transition: Proceedings of the Western Hemisphere Congress, no. 5, pp. 281–288 [P White and N Selvey, editors]. Monroe, WI: American Medical Association.
241. Gregory, J, Foster, K & Tyler, H (1990) The Dietary and Nutritional Survey of British Adults. London: HM Stationery Office.
242. Ministry of Agriculture, Fisheries and Food (1994) The Dietary Survey of British Adults: Further Analysis. London: HM Stationery Office.
243. Kauwell, GPA, Lippert, BL, Wilsky, CE, et al. (2000) Folate status of elderly women following moderate folate depletion responds only to a higher folate intake. J Nutr 130, 15841590.
244. Rampersaud, GC, Kauwell, GP, Hutson, AD, et al. (2000) Genomic DNA methylation decreases in response to moderate folate depletion in elderly women. Am J Clin Nutr 72, 9981003.
245. Selhub, J, Jacques, PF, Wilson, PW, et al. (1993) Vitamin status and intake as primary determinants of homocysteinemia in an elderly population. JAMA 270, 26932698.
246. Baggott, JE, Morgan, SL, Ha, T, et al. (1992) Inhibition of folate-dependent enzymes by non-steroidal anti-inflammatory drugs. Biochem J 282, 197202.
247. Roe, DA (1989) Diet and Drug Interactions, 1st ed., pp. 83105. New York: Van Nostrand Reinhold.
248. Corominas-Faja, B, Quirantes-Piné, R, Oliveras-Ferraros, C, et al. (2012) Metabolomic fingerprint reveals that metformin impairs one-carbon metabolism in a manner similar to the antifolate class of chemotherapy drugs. Aging 4, 480498.
249. Neu, HC & Gootz, TD (1996) Antimicrobial chemotherapy. In Medical Microbiology, 4th ed., chapter 11 [S Baron, editor]. Galveston, TX: University of Texas Medical Branch at Galveston.
250. Leonard, JP, Desager, JP, Beckers, C, et al. (1979) In vitro binding of various biological substances by two hypocholesterolaemic resins. Cholestyramine and colestipol. Arzneimittelforschung 29, 979981.
251. Corcino, J, Waxman, S & Herbert, V (1970) Mechanism of triamterene-induced megaloblastosis. Ann Intern Med 73, 419424.
252. LeBlanc, JG, Milani, C, de Giori, GS, et al. (2013) Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Curr Opin Biotechnol 24, 160168.
253. Brody, T (1998) Nutritional Biochemistry, 2nd ed., pp. 516524. San Diego, CA: Academic Press.
254. Goulding, CW, Postigo, D & Matthews, RG (1997) Cobalamin-dependent methionine synthase is a modular protein with distinct regions for binding homocysteine, methyltetrahydrofolate, cobalamin, and adenosylmethionine. Biochemistry 36, 80828091.
255. Cooper, BA & Rosenblatt, DS (1987) Inherited defects of vitamin B12 metabolism. Annu Rev Nutr 7, 291320.
256. Neuberger, A (1961) Aspects of the metabolism of glycine and of porphyrins. Biochem J 78, 110.
257. Toh, BH, van Driel, IR & Gleeson, PA (1997) Pernicious anemia. N Engl J Med 337, 14411448.
258. Silva, MT, Cavalcanti, JL & Moreira, DM (2000) Neuroradiological features of the brain in subacute combined spinal cord degeneration: case report [Article in Portuguese]. Arq Neuropsiquiatr 58, 752755.
259. Adams, RD & Kubik, CS (1944) Subacute degeneration of the brain in pernicious anemia. N Engl J Med 231, 19.
260. Pant, SS, Asbury, AK & Richardson, EP (1968) The myelopathy of pernicious anemia. A neuropathological reappraisal. Acta Neurol Scand 44, Suppl. 5, 136.
261. Greenfield, JG & Carmichael, EA (1935) The peripheral nerves in cases of subacute combined degeneration of the cord. Brain 58, 483491.
262. McCombe, PA & McLeod, JG (1984) The peripheral neuropathy of vitamin B12 deficiency. J Neurol Sci 66, 117126.
263. Chand, G & Maller, V (2008) Subacute combined degeneration of the spinal cord. Internet J Radiol 10, 1.
264. Healton, EB, Savage, DG, Brust, JC, et al. (1991) Neurologic aspects of cobalamin deficiency. Medicine 70, 229245.
265. Ralapanawa, DMPUK, Jayawickreme, KP, Ekanayake, EMM, et al. (2015) B12 deficiency with neurological manifestations in the absence of anaemia. BMC Res Notes 8, 458.
266. Hin, H, Clarke, R, Sherliker, P, et al. (2006) Clinical relevance of low serum vitamin B12 concentrations in older people: the Banbury B12 Study. Age Ageing 35, 416422.
267. Savage, DG & Lindenbaum, J (1995) Neurological complications of acquired cobalamin deficiency: clinical aspects. Baillieres Clin Haematol 8, 657678.
268. Leishear, K, Boudreau, RM, Studenski, SA, et al. (2012) Relationship between vitamin B12 and sensory and motor peripheral nerve function in older adults. J Am Geriatr Soc 60, 10571063.
269. Matteini, AM, Walston, JD, Fallin, MD, et al. (2008) Markers of B-vitamin deficiency and frailty in older women. J Nutr Health Aging 12, 303308.
270. Oberlin, BS, Tangney, CC, Gustashaw, KA, et al. (2013) Vitamin B12 deficiency in relation to functional disabilities. Nutrients 5, 44624475.
271. Lindenbaum, J, Healton, EB, Savage, DG, et al. (1988) Neuropsychiatric disorders caused by cobalamin deficiency in the absence of anemia or macrocytosis. N Engl J Med 318, 17201728.
272. Carmel, R (1988) Pernicious anemia. The expected findings of very low serum cobalamin levels, anemia, and macrocytosis are often lacking. Arch Intern Med 148, 17121714.
273. Swart, KMA, Ham, AC, van Wijngaarden, JP, et al. (2005) A randomized controlled trial to examine the effect of 2-year vitamin B12 and folic acid supplementation on physical performance, strength, and falling: additional findings from the B-PROOF Study. Calcif Tissue Int 98, 1827.
274. Kortebein, P, Ferrando, A, Lombeida, J, et al. (2007) Effect of 10 days of bed rest on skeletal muscle in healthy older adults. JAMA 297, 17721774.
275. Bell, IR, Edman, JS, Miller, J, et al. (1990) Relationship of normal serum vitamin B12 and folate levels to cognitive test performance in subtypes of geriatric major depression. J Geriatr Psychiatry Neurol 3, 98105.
276. Tangney, CC, Aggarwal, NT, Li, H, et al. (2011) Vitamin B12, cognition, and brain MRI measures: a cross-sectional examination. Neurology 77, 12761282.
277. Kim, NH, Kim, HS, Eun, CR, et al. (2011) Depression is associated with sarcopenia, not central obesity, in elderly Korean men. J Am Geriatr Soc 59, 20622068.
278. Hsu, Y-H, Liang, C-K, Chou, M-Y, et al. (2014) Association of cognitive impairment, depressive symptoms and sarcopenia among healthy older men in the veterans retirement community in southern Taiwan: a cross-sectional study. Geriatr Gerontol Int 14, 102108.
279. Verlaan, S, Aspray, TJ, Bauer, JM, et al. (2015) Nutritional status, body composition, and quality of life in community-dwelling sarcopenic and non-sarcopenic older adults: a case–control study. Clin Nutr 36, 267274.
280. Bor, MV, Lydeking-Olsen, E, Møller, J, et al. (2006) A daily intake of approximately 6 microg vitamin B-12 appears to saturate all the vitamin B-12-related variables in Danish postmenopausal women. Am J Clin Nutr 83, 5258.
281. King, CE, Leibach, J & Toskes, PP (1979) Clinically significant vitamin B12 deficiency secondary to malabsorption of protein-bound vitamin B12 . Dig Dis Sci 24, 397402.
282. Suter, PM, Golner, BB, Goldin, BR, et al. (1991) Reversal of protein-bound vitamin B12 malabsorption with antibiotics in atrophic gastritis. Gastroenterology 101, 10391045.
283. Krasinski, SD, Russell, RM, Samloff, IM, et al. (1986) Fundic atrophic gastritis in an elderly population. Effect on hemoglobin and several serum nutritional indicators. J Am Geriatr Soc 34, 800806.
284. van Oijen, MGH, Sipponen, P, Laheij, RJF, et al. (2007) Gastric status and vitamin B12 levels in cardiovascular patients. Dig Dis Sci 52, 21862189.
285. Kong, Y-J, Yi, H-G, Dai, J-C, et al. (2014) Histological changes of gastric mucosa after Helicobacter pylori eradication: a systematic review and meta-analysis. World J Gastroenterol 20, 59035911.
286. Lam, JR, Schneider, JL, Zhao, W, et al. (2013) Proton pump inhibitor and histamine 2 receptor antagonist use and vitamin B12 deficiency. JAMA 310, 24352442.
287. Wham, C, Teh, R, Moyes, SA, et al. (2016) Micronutrient intake in advanced age: Te Puāwaitanga o Ngā Tapuwae Kia ora Tonu, Life and Living in Advanced Age: A Cohort Study in New Zealand (LiLACS NZ). Br J Nutr 116, 17541769.
288. Bianchetti, A, Rozzini, R, Carabellese, C, et al. (1990) Nutritional intake, socioeconomic conditions, and health status in a large elderly population. J Am Geriatr Soc 38, 521526.
289. Penninx, BW, Guralnik, JM, Ferrucci, L, et al. (2000) Vitamin B12 deficiency and depression in physically disabled older women: epidemiologic evidence from the Women’s Health and Aging Study. Am J Psychiatry 157, 715721.
290. Pennypacker, LC, Allen, RH, Kelly, JP, et al. (1992) High prevalence of cobalamin deficiency in elderly outpatients. J Am Geriatr Soc 40, 11971204.
291. Elsborg, L, Lung, V & Bastrup-Madsen, P (1976) Serum vitamin B12 levels in the aged. Acta Med Scand 200, 309314.
292. Gonzalez-Gross, M, Sola, R, Albers, U, et al. (2007) B-vitamins and homocysteine in Spanish institutionalized elderly. Int J Vitam Nutr Res 77, 2233.
293. Morris, MS, Jacques, PF, Rosenberg, IH, et al. (2002) Elevated serum methylmalonic acid concentrations are common among elderly Americans. J Nutr 132, 27992803.
294. Heil, SG, de Jonge, R, de Rotte, MCFJ, et al. (2012) Screening for metabolic vitamin B12 deficiency by holotranscobalamin in patients suspected of vitamin B12 deficiency: a multicentre study. Ann Clin Biochem 49, 184189.
295. Obeid, R & Herrmann, W (2007) Holotranscobalamin in laboratory diagnosis of cobalamin deficiency compared to total cobalamin and methylmalonic acid. Clin Chem Lab Med 45, 17461750.
296. Remacha, AF, Sardà, MP, Canals, C, et al. (2014) Role of serum holotranscobalamin (holoTC) in the diagnosis of patients with low serum cobalamin. Comparison with methylmalonic acid and homocysteine. Ann Hematol 93, 565569.
297. Valente, E, Scott, JM, Ueland, P-M, et al. (2011) Diagnostic accuracy of holotranscobalamin, methylmalonic acid, serum cobalamin, and other indicators of tissue vitamin B12 status in the elderly. Clin Chem 57, 856863.
298. Reizenstein, P, Ek, G & Matthews, CME (1966) Vitamin B12 kinetics in man. Implications on total-body-B12-determinations, human requirements, and normal and pathological cellular B12 uptake. Phys Med Biol 11, 295306.
299. Grasbeck, R, Nyberg, W & Reizenstein, P (1958) Biliary and fecal vit. B12 excretion in man. an isotope study. Exp Biol Med 97, 780784.
300. Die Deutsche Gesellschaft für Ernährung e. V. (DGE) (2015) Vitamin B12 (cobalamine) [in German]. https://www.dge.de/wissenschaft/referenzwerte/vitamin-b12/ (accessed July 2016).
301. European Food Safety Authority (EFSA) Panel on Dietetic Products, Nutrition and Allergies (2015) Scientific opinion on dietary reference values for cobalamin (vitamin B12). EFSA J 13, 4150.
302. Bor, MV, von Castel-Roberts, KM, Kauwell, GP, et al. (2010) Daily intake of 4 to 7 g dietary vitamin B-12 is associated with steady concentrations of vitamin B-12-related biomarkers in a healthy young population. Am J Clin Nutr 91, 571577.
303. Gross, JS, Weintraub, NT, Neufeld, RR, et al. (1986) Pernicious anemia in the demented patient without anemia or macrocytosis. A case for early recognition. J Am Geriatr Soc 34, 612614.
304. Carmel, R, Karnaze, DS & Weiner, JM (1988) Neurologic abnormalities in cobalamin deficiency are associated with higher cobalamin “analogue” values than are hematologic abnormalities. J Lab Clin Med 111, 5762.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Nutrition Research Reviews
  • ISSN: 0954-4224
  • EISSN: 1475-2700
  • URL: /core/journals/nutrition-research-reviews
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 2
Total number of PDF views: 31 *
Loading metrics...

Abstract views

Total abstract views: 233 *
Loading metrics...

* Views captured on Cambridge Core between 9th May 2018 - 23rd June 2018. This data will be updated every 24 hours.