Skip to main content Accessibility help
×
Home
Hostname: page-component-55b6f6c457-dz7l6 Total loading time: 0.354 Render date: 2021-09-27T17:34:54.634Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Zinc Nutrition in Developing Countries

Published online by Cambridge University Press:  14 December 2007

Rosalind S. Gibson
Affiliation:
Division of Applied Human Nutrition, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
Rights & Permissions[Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Research Article
Copyright
Copyright © The Nutrition Society 1994

References

Aggett, P. J. (1991). The assessment of zinc status: a personal view. Proceedings of the Nutrition Society 50, 917.Google Scholar
Arcasoy, A., Çavdar, A. O. & Babacan, E. (1978). Decreased iron and zinc absorption in Turkish children with iron deficiency and geophagia. Acta Hematologica 60, 7684.Google Scholar
Baer, M. T. & King, J. C. (1984). Tissue zinc levels and zinc excretion during experimental zinc depletion in young men. American Journal of Clinical Nutrition 39, 556570.Google Scholar
Bates, C. J., Evans, P. H., Dardenne, M., Prentice, A., Lunn, P. G., Northrop-Clewes, C. A., Hoare, S., Cole, T. J., Horan, S. J., Longman, S. C., Stirling, D. & Aggett, P. J. (1993). A trial of zinc supplementation in young rural Gambian children. British Journal of Nutrition 69, 243255.Google Scholar
Beaton, G. H. (1985). Uses and limits of the use of the Recommended Dietary Allowances for evaluating dietary intake data. American Journal of Clinical Nutrition 41, 155164.Google Scholar
Bettger, W. J., Fish, T. J. & O'Dell, B. L. (1978). Effects of copper and zinc status of rats on erythrocyte stability and superoxide dismutase activity. Proceedings of the Society for Experimental Biology and Medicine 158, 279282.Google Scholar
Bindra, G. S., Gibson, R. S. & Thompson, L. U. (1986). [Phytate][calcium]/[zinc] ratios in Asian immigrant lactoovo vegetarian diets and their relationship to zinc nutriture. Nutrition Research 6, 475483.Google Scholar
Bradfield, R. B. & Hambidge, K. M. (1980). Problems with hair zinc as an indicator of body zinc status. Lancet 1, 363.Google Scholar
Breskin, M. W., Worthington-Roberts, B. S., Knopp, R. H., Brown, Z., Plovie, B., Mottet, N. K. & Mills, J. L. (1983). First trimester serum zinc concentrations in human pregnancy. American Journal of Clinical Nutrition 38, 943953.Google Scholar
Brown, K., Akhtar, N. A., Robertson, A. D. & Ahmed, M. G. (1986). Lactational capacity of marginally nourished mothers: relationships between maternal nutritional status and quantity and proximate composition of milk. Pediatrics 78, 909919.Google Scholar
Brune, M., Rossander, L. & Hallberg, L. (1989). Iron absorption: no intestinal adaptation to a high-phytate diet. American Journal of Clinical Nutrition 49, 542545.Google Scholar
Butte, N. F., Villalpando, S., Wong, W. W., Flores-Huerta, S., Hernandez-Beltran, M. de J., O'Brian Smith, E. & Garza, C. (1992). Human milk intake and growth faltering of rural Mesoamerindian infants. American Journal of Clinical Nutrition 55, 11091116.Google Scholar
Butterworth, C. E., Hatch, K., Cole, P., Sauberlich, H. E., Tamura, T., Cornwell, P. E. & Soong, S.-J. (1988). Zinc concentration in plasma and erythrocytes of subjects receiving folic acid supplementation. American Journal of Clinical Nutrition 47, 484486.Google Scholar
Buzina, R., Jušić, M., Sapunar, J. & Milanović, N. (1980). Zinc nutrition and taste acuity in school children with impaired growth. American Journal of Clinical Nutrition 33, 22622267.Google Scholar
Campbell-Brown, M., Ward, R. J., Haines, A. P., North, W. R. S., Abraham, R. & McFadyen, I. R. (1985). Zinc and copper in Asian pregnancies – is there evidence for a nutritional deficiency? British Journal of Obstetrics and Gynaecology 92, 875885.Google Scholar
Carter, J. P., Grivetti, L. E., Davis, J. T., Nasiff, S., Mansour, A., Mousa, W. A., Atta, A., Patwardhan, V. N., Moneim, M. A., Abdou, I. A. & Darby, W. J. (1969). Growth and sexual development of adolescent Egyptian village boys. Effects of zinc, iron, and placebo supplementation. American Journal of Clinical Nutrition 22, 5978.Google Scholar
Casey, C. E., Neville, M. C. & Hambidge, K. M. (1989). Studies in human lactation: secretion of zinc, copper, and manganese in human milk. American Journal of Clinical Nutrition 49, 773785.Google Scholar
Castillo-Duran, C., Heresi, G., Fisberg, M. & Uauy, R. (1987). Controlled trial of zinc supplementation during recovery from malnutrition: effects on growth and immune function. American Journal of Clinical Nutrition 45, 602608.Google Scholar
Cavan, K. R., Gibson, R. S., Grazioso, C. F., Isalgue, A. M., Ruz, M. & Solomons, N. W. (1993 a). Growth and body composition of periurban Guatemalan children in relation to zinc status: a cross-sectional study. American Journal of Clinical Nutrition 57, 334343.Google Scholar
Cavan, K. R., Gibson, R. S., Grazioso, C. F., Isalgue, A. M., Ruz, M. & Solomons, N. W. (1993 b). Growth and body composition of periurban Guatemalan children in relation to zinc status: a zinc intervention trial. American Journal of Clinical Nutrition 57, 344352.Google Scholar
Çavdar, A. O., Babacan, E. & Arcasoy, A. (1980). Effect of nutrition on serum zinc concentration during pregnancy in Turkish women. American Journal of Clinical Nutrition 33, 542544.Google Scholar
Çavdar, A. O., Bahceci, M., Akar, N., Erten, J. & Yavuz, H. (1991). Effect of zinc supplementation in a Turkish woman with two previous anencephalic infants. Gynecologic and Obstetric Investigation 32, 123125.Google Scholar
Cherry, F. F., Bennett, E. A., Bazzano, G. S., Johnson, L. K., Fosmire, G. J. & Batson, H. K. (1981). Plasma zinc in hypertension/toxemia and other reproductive variables in adolescent pregnancy. American Journal of Clinical Nutrition 34, 23672375.Google Scholar
Cherry, F. F., Sandstead, H. H., Rojas, P., Johnson, L. K., Batson, H. K. & Wang, X. B. (1989). Adolescent pregnancy: associations among body weight, zinc nutriture, and pregnancy outcome. American Journal of Clinical Nutrition 50, 945954.Google Scholar
Chesters, J. K. & Will, M. (1978). The assessment of zinc status of an animal from the uptake of 65Zn by the cells of whole blood in vitro. British Journal of Nutrition 38, 297306.Google Scholar
Cossack, Z. T. & Prasad, A. S. (1983). Effect of protein source on the bioavailability of zinc in human subjects. Nutrition Research 3, 2331.Google Scholar
Davies, N. T., Carswell, A. J. P. & Mills, C. F. (1985). The effect of variations in dietary calcium intake on the phytate-zinc interaction in rats. In Trace Elements in Man and Animals (5th International Symposium), pp. 456457 [Mills, C. F., Bremner, I. and Chesters, J. K., editors]. Farnham Royal: Commonwealth Agricultural Bureaux.Google Scholar
Dorea, J. G. (1993). Is zinc a first limiting nutrient in human milk? Nutrition Research 13, 659666.Google Scholar
Erten, J., Arcasoy, A., Çavdar, A. O. & Cin, S. (1978). Hair zinc levels in healthy and malnourished children. American Journal of Clinical Nutrition 31, 11721174.Google Scholar
Ferguson, E. L. (1992). A comparison of food consumption patterns and zinc status of preschool children from Southern Malawi and Ghana. Ph.D. thesis, University of Guelph.Google Scholar
Ferguson, E. L., Gibson, R. S., Opare-Obisaw, C., Osei-Opare, F., Stephen, A. M., Lehrfeld, J. & Thompson, L. U. (1993 a). The zinc, calcium, copper, manganese, nonstarch polysaccharide and phytate content of seventyeight locally grown and prepared African foods. Journal of Food Composition and Analysis 6, 8799.Google Scholar
Ferguson, E. L., Gibson, R. S., Opare-Obisaw, C., Ounpuu, S., Thompson, L. U. & Lehrfeld, J. (1993 b). The zinc nutriture of preschool children living in two African countries. Journal of Nutrition 123, 14871496.Google Scholar
Ferguson, E. L., Gibson, R. S., Thompson, L. U. & Ounpuu, S. (1989 a). Dietary calcium, phytate, and zinc intakes and the calcium, phytate, and zinc molar ratios of the diets of a selected group of East African children. American Journal of Clinical Nutrition 50, 14501456.Google Scholar
Ferguson, E. L., Gibson, R. S., Thompson, L. U., Ounpuu, S. & Berry, M. (1988). Phytate, zinc, and calcium contents of 30 East African foods and their calculated phytate: Zn, Ca:phytate, and [Ca][phytate]/[Zn] molar ratios. Journal of Food Composition and Analysis 1, 316325.Google Scholar
Ferguson, E. L., Gibson, R. S., Weaver, S. D., Heywood, P., Heywood, A. & Yaman, C. (1989 b). The mineral content of commonly consumed Malawian and Papua New Guinean foods. Journal of Food Composition and Analysis 2, 260272.Google Scholar
Filteau, S. M. & Tomkins, A. M. (1994). Micronutrients and tropical infections. Transactions of the Royal Society of Tropical Medicine and Hygiene 88, 13.Google Scholar
Fitzgerald, S. L., Gibson, R. S., Quan de Serrano, J., Portocarrero, L., Vasquez, A., de Zepeda, E., Lopez-Palacios, C. Y., Thompson, L. U., Stephen, A. M. & Solomons, N. W. (1993). Trace element intakes and dietary phytate/Zn and Ca x phytate/Zn millimolar ratios of periurban Guatemalan women during the third trimester of pregnancy. American Journal of Clinical Nutrition 57, 195201.Google Scholar
Fordyce, E. J., Forbes, R. M., Robins, K. R. & Erdman, J. W. (1987). Phytate x calcium/zinc molar ratios: are they predictive of zinc bioavailability? Journal of Food Science 52, 440444.Google Scholar
Gibson, R. S. (1989). Assessment of trace element status in humans. Progress in Food and Nutrition Science 13, 67111.Google Scholar
Gibson, R. S., Ferguson, E. F., Smit Vanderkooy, P. D. & MacDonald, A. C. (1989 a). Seasonal variations in hair zinc concentrations in Canadian and African children. Science of the Total Environment 84, 291298.Google Scholar
Gibson, R. S., Heywood, A., Yaman, C., Sohlström, A., Thompson, L. U. & Heywood, P. (1991 a). Growth in children from the Wosera subdistrict, Papua New Guinea, in relation to energy and protein intakes and zinc status. American Journal of Clinical Nutrition 53, 782789.Google Scholar
Gibson, R. S., Smit Vanderkooy, P. D., MacDonald, A. C., Goldman, A., Ryan, B. A. & Berry, M. (1989 b). A growth-limiting, mild zinc-deficiency syndrome in some Southern Ontario boys with low height percentiles. American Journal of Clinical Nutrition 49, 12661273.Google Scholar
Gibson, R. S., Smit Vanderkooy, P. D. & Thompson, L. U. (1991 b). Dietary phytate x calcium/zinc millimolar ratios and zinc nutriture in some Ontario preschool children. Biological Trace Element Research 30, 8794.Google Scholar
Giugliano, R. & Millward, D. J. (1984). Growth and zinc homeostasis in the severely Zn-deficient rat. British Journal of Nutrition 52, 545560.Google Scholar
Golden, M. H. N. (1989). The diagnosis of zinc deficiency. In Zinc in Human Biology (International Life Sciences Institute of Human Nutrition Reviews), pp. 324333 [Mills, C. F., editor]. Berlin: Springer-Verlag.Google Scholar
Golden, M. H. N. & Golden, B. E. (1981 a). Effect of zinc supplementation on the dietary intake, rate of weight gain, and energy cost of tissue deposition in children recovering from severe malnutrition. American Journal of Clinical Nutrition 34, 900908.Google Scholar
Golden, M. H. N. & Golden, B. E. (1981 b). Trace elements: potential importance in human nutrition with particular reference to zinc and vanadium. British Medical Bulletin 37, 3136.Google Scholar
Grider, A., Bailey, L. B. & Cousins, R. J. (1990). Erythrocyte metallothionein as an index of zinc status in humans. Proceedings of the National Academy of Sciences, USA 87, 12591262.Google Scholar
Hambidge, K. M. (1982). Hair analyses: worthless for vitamins, limited for minerals. American Journal of Clinical Nutrition 36, 943949.Google Scholar
Hambidge, K. M. (1989). Mild zinc deficiency in children. In Zinc in Human Biology (International Life Sciences Institute of Human Nutrition Reviews), pp. 285295 [Mills, C. F., editor]. Berlin: Springer-Verlag.Google Scholar
Hambidge, K. M., Hambidge, C., Jacobs, M. & Baum, J. D. (1972). Low levels of zinc in hair, anorexia, poor growth, and hypogeusia in children. Pediatric Research 6, 868874.Google Scholar
Hambidge, K. M., Krebs, N. F., Jacobs, M. A., Favier, A., Guyette, L. & Ikle, D. N. (1983). Zinc nutritional status during pregnancy: a longitudinal study. American Journal of Clinical Nutrition 37, 429442.Google Scholar
Hambidge, K. M., Neldner, K. H. & Walravens, P. A. (1975). Zinc, acrodermatitis enteropathica, and congenital malformations. Lancet 1, 577578.Google Scholar
Harland, B. F. & Oberleas, D. (1986). Anion-exchange method for determination of phytate in foods: collaborative study. Journal of the Association of Official Analytical Chemists 69, 667670.Google Scholar
Harland, B. F. & Peterson, M. (1978). Nutritional status of lacto-ovo vegetarian Trappist monks. Journal of the American Dietetic Association 72, 259264.Google Scholar
Hinks, L. J., Ogilvy-Stuart, A., Hambidge, K. M. & Walker, V. (1989). Maternal zinc and selenium status in pregnancies with a neural tube defect or elevated plasma α-fetoprotein. British Journal of Obstetrics and Gynaecology 96, 6166.Google Scholar
Hunt, I. F., Murphy, N. J., Cleaver, A. E., Faraji, B., Swendseid, M. E., Browdy, B. L., Coulson, A. H., Clark, V. A., Settlage, R. H. & Smith, J. C. (1985). Zinc supplementation during pregnancy in low-income teenagers of Mexican descent: effects on selected blood constituents and on progress and outcome of pregnancy. American Journal of Clinical Nutrition 42, 815828.Google Scholar
Hunt, I. F., Murphy, N. J., Cleaver, A. E., Faraji, B., Swendseid, M. E., Coulson, A. H., Clark, V. A., Browdy, B. L., Cabalum, M. J. & Smith, J. C. (1984). Zinc supplementation during pregnancy: effects on selected blood constituents and on progress and outcome of pregnancy in low-income women of Mexican descent. American Journal of Clinical Nutrition 40, 508521.Google Scholar
Hurley, L. S. & Swenerton, H. (1966). Congenital malformations resulting from zinc deficiency in rats. Proceedings of the Society for Experimental Biology and Medicine 123, 692696.Google Scholar
Jackson, M. J., Giugliano, R., Giugliano, L. G., Oliveira, E. F., Shrimpton, R. & Swainbank, I. G. (1988). Stable isotope metabolic studies of zinc nutrition in slum-dwelling lactating women in the Amazon valley. British Journal of Nutrition 59, 193203.Google Scholar
Jameson, S. (1976). Effects of zinc deficiency in human reproduction. Acta Medica Scandinavica Suppl. 593, 589.Google Scholar
Jameson, S., Burtsröm, M. & Hellsing, K. (1990). Zinc status in pregnancy. The effect of zinc therapy on perinatal mortality. In International Symposium on Trace Elements in Man and Animals VII, pp. 4.84.9 [Momcilovic, B., editor].Google Scholar
Jones, R. B., Keeling, P. W. N., Hilton, P. J. & Thompson, R. P. H. (1981). The relationship between leucocyte and muscle zinc in health and disease. Clinical Science 60, 237239.Google Scholar
Karra, M. V., Udipi, S. A., Kirksey, A. & Roepke, J. L. B. (1986). Changes in specific nutrients in breast milk during extended lactation. American Journal of Clinical Nutrition 43, 495503.Google Scholar
Khanum, S., Alam, A. N., Anwar, I., Akbar Ali, M. & Mujibur Rahaman, M. (1988). Effect of zinc supplementation on the dietary intake and weight gain of Bangladeshi children recovering from protein-energy malnutrition. European Journal of Clinical Nutrition 42, 709714.Google Scholar
King, J. C. (1986). Assessment of techniques for determining human zinc requrements. Journal of the American Dietetic Association 86, 15231528.Google Scholar
Kirsten, G. F., Heese, H. de V., Watermeyer, S., Dempster, W. S., Pocock, F. & Varkvisser, H. (1985). Zinc and copper levels in the breast-milk of Cape Town mothers. South African Medical Journal 68, 402405.Google Scholar
Koo, W. W. K., Succop, P. & Hambidge, K. M. (1989). Serum alkaline phosphatase and serum zinc concentrations in preterm infants with rickets and fractures. American Journal of Diseases of Children 143, 13421345.Google Scholar
Krebs, N. F., Hambidge, K. M., Hagerman, R. J., Peirce, P. L., Johnson, K. M., English, J. L., Miller, L. L. & Fennessey, P. V. (1988). Effects of pharmacologic doses of folate on zinc absorption and zinc status. In Nutrient Availability: Chemical and Biological Aspects (Royal Society of Chemistry Special Publication No. 72), pp. 226228 [Southgate, D. A. T., Johnson, I. T. and Fenwick, G. R., editors]. Cambridge: Royal Society of Chemistry.Google Scholar
Krebs, N. F., Hambidge, K. M., Jacobs, M. A. & Rasbach, J. O. (1985). The effects of a dietary zinc supplement during lactation on longitudinal changes in maternal zinc status and milk zinc concentrations. American Journal of Clinical Nutrition 41, 560570.Google Scholar
Krebs, N. F., Hambidge, K. M. & Walravens, P. A. (1984). Increased food intake of young children receiving a zinc supplement. American Journal of Diseases of Children 138, 270273.Google Scholar
Lehrfeld, J. (1989). High-performance liquid chromatography analysis of phytic acid on a pH-stable, macroporous polymer column. Cereal Chemistry 66, 510515.Google Scholar
Lönnerdal, B., Sandberg, A.-S., Sandström, B. & Kunz, C. (1989). Inhibitory effects of phytic acid and other inositol phosphates on zinc and calcium absorption in suckling rats. Journal of Nutrition 119, 211214.Google Scholar
McMichael, A. J., Dreosti, I. E., Gibson, G. T., Hartshorne, J. M., Buckley, R. A. & Colley, D. P. (1982). A prospective study of serial maternal serum zinc levels and pregnancy outcome. Early Human Development 7, 5969.Google Scholar
Mahomed, K., James, D. K., Golding, J. & McCabe, R. (1989). Zinc supplementation during pregnancy: a double blind randomised controlled trial. British Medical Journal 299, 826830.Google Scholar
Malhotra, A., Fairweather-Tait, S. J., Wharton, P. A. & Gee, H. (1990). Placental zinc in normal and intra-uterine growth-retarded pregnancies. British Journal of Nutrition 63, 613621.Google Scholar
Mbofung, C. M. F. & Atinmo, T. (1987). Trace element nutriture of Nigerians. World Review of Nutrition and Dietetics 51, 105139.Google Scholar
Meadows, N. J., Ruse, W., Smith, M. F., Day, J., Keeling, P. W. N., Scopes, J. W., Thompson, R. P. H. & Bloxam, D. L. (1981). Zinc and small babies. Lancet 2, 11351137.Google Scholar
Mills, C. F. (1985). Dietary interactions involving the trace elements. Annual Review of Nutrition 5, 173193.Google Scholar
Milne, D. B., Canfield, W. K., Mahalko, J. R. & Sandstead, H. H. (1984). Effect of oral folic acid supplements on zinc, copper, and iron absorption and excretion. American Journal of Clinical Nutrition 39, 535539.Google Scholar
Milne, D. B., Ralston, N. V. C. & Wallwork, J. C. (1985). Zinc content of cellular components of blood: methods for cell separation and analysis evaluated. Clinical Chemistry 31, 6569.Google Scholar
Monsen, E. R. (1988). Iron nutrition and absorption: dietary factors which impact iron bioavailability. Journal of the American Dietetic Association 88, 786791.Google Scholar
Moser, P. B., Reynolds, R. D., Acharya, S., Howard, M. P., Andon, M. B. & Lewis, S. A. (1988). Copperm, iron, zinc, and selenium dietary intake and status of Nepalese lactating women and their breast-fed infants. American Journal of Clinical Nutrition 47, 729734.Google Scholar
Moser-Veillon, P. B. & Reynolds, R. D. (1990). A longitudinal study of pyridoxine and zinc supplementation of lactating women. American Journal of Clinical Nutrition 52, 135141.Google Scholar
Mukherjee, M. D., Sandstead, H. H., Ratnaparkhi, M. V., Johnson, L. K., Milne, D. B. & Stelling, H. P. (1984). Maternal zinc, iron, folic acid, and protein nutriture and outcome of human pregnancy. American Journal of Clinical Nutrition 40, 496507.Google Scholar
Murphy, S. P., Beaton, G. H. & Calloway, D. H. (1992). Estimated mineral intakes of toddlers: predicted prevalence of inadequacy in village populations in Egypt, Kenya, and Mexico. American Journal of Clinical Nutrition 56, 565572.Google Scholar
National Academy of Sciences. (1991). Nutrition During Pregnancy. Washington, DC: National Academy Press.Google Scholar
National Research Council. (1986). Nutrient Adequacy: Assessment Using Food Consumption Surveys. Washington, DC: National Academy Press.Google Scholar
Neggers, Y. H., Cutter, G. R., Acton, R. T., Alvarez, J. O., Bonner, J. L., Goldenberg, R. L., Go, R. C. P. & Roseman, J. M. (1990). A positive association between maternal serum zinc concentration and birth weight. American Journal of Clinical Nutrition 51, 678684.Google Scholar
O'Dell, B. L., Reynolds, G. & Reeves, P. G. (1977). Analogous effects of zinc deficiency and aspirin toxicity in the pregnant rat. Journal of Nutrition 107, 12221228.Google Scholar
Oberleas, D. & Harland, B. F. (1981). Phytate content of foods: effect on dietary zinc bioavailability. Journal of the American Dietetic Association 79, 433436.Google Scholar
Okonofua, F. E., Amole, F. A., Emofurieta, W. O. & Ugwu, N. C. (1989). Zinc and copper concentration in plasma of pregnant women in Nigeria. International Journal of Gynecology and Obstetrics 29, 1923.Google Scholar
Okonofua, F. E., Isinkaye, A., Onwudiegwu, U., Amole, F. A., Emofurieta, W. A. & Ugwu, N. C. (1990). Plasma zinc and copper in pregnant Nigerian women at term and their newborn babies. International Journal of Gynecology and Obstetrics 32, 243245.Google Scholar
Prasad, A. S. & Cossack, Z. T. (1982). Neutrophil zinc: an indicator of zinc status in man. Transactions of the Association of American Physicians 95, 165176.Google Scholar
Prasad, A. S., Meftah, S., Abdallah, J., Kaplan, J., Brewer, G. J., Bach, J. F. & Dardenne, M. (1988). Serum thymulin in human zinc deficiency. Journal of Clinical Investigation 82, 12021210.Google Scholar
Prasad, A. S., Miale, A., Farid, Z., Sandstead, H. H. & Schulert, A. R. (1963). Zinc metabolism in patients with syndrome of iron deficiency anemia, hepatosplenomegaly, dwarfism, and hypogonadism. Journal of Laboratory and Clinical Medicine 61, 537549.Google Scholar
Prema, K. (1980). Predictive value of serum copper and zinc in normal and abnormal pregnancy. Indian Journal of Medical Research 71, 554560.Google Scholar
Reddy, N. R., Pierson, M. D., Sathe, S. K. & Salunkhe, D. K. (1989). Phytates in Cereals and Legumes. Boca Raton, FL: CRC Press.Google Scholar
Rodriguez, A., Venegas, G. V. & Torres, S. (1991). Zinc supplementation of infants fetal malnourished. In Reunión de la Sociedad Latinoamericana de Oncologia Pediatrica VIII.Google Scholar
Ronaghy, H. S., Reinhold, J. G., Mahloudji, M., Ghavami, P., Spivey Fox, M. R. & Halsted, J. A. (1974). Zinc supplementation of malnourished schoolboys in Iran: increased growth and other effects. American Journal of Clinical Nutrition 27, 112121.Google Scholar
Ronaghy, H. S., Spivey Fox, M. R., Garn, S. M., Israel, H., Harp, A., Moe, P. G. & Halsted, J. A. (1969). Controlled zinc supplementation for malnourished school boys: a pilot experiment. American Journal of Clinical Nutrition 22, 12791289.Google Scholar
Rothbaum, R. J., Maur, P. R. & Farrell, M. K. (1982). Serum alkaline phosphatase and zinc undernutrition in infants with chronic diarrhea. American Journal of Clinical Nutrition 35, 595598.Google Scholar
Roy, S. K., Bchrens, R. H., Haider, R., Akramuzzaman, S. M., Mahalanabis, D., Wahed, M. A. & Tomkins, A. M. (1992). Impact of zinc supplementation on intestinal permeability in Bangladeshi children with acute diarrhoea and persistent diarrhoea syndrome. Journal of Pediatric Gastroenterology and Nutrition 15, 289296.Google Scholar
Roy, S. K., Tomkins, A. M., Haider, R., Behrens, R. H. & Akramuzzaman, S. M. (1993). The importance of zinc deficiency in stunting and morbidity. International Congress of Nutrition XV, p. 713 (Abstr.)Google Scholar
Royal Tropical Institute, Amsterdam. (1987). Weaning Food – a New Approach to Small-scale Weaning Food Production from Indigenous Raw Materials in Tropical Countries, 2nd edn. Amsterdam: Royal Tropical Institute.Google Scholar
Ruz, M., Cavan, K. R., Bettger, W. J. & Gibson, R. S. (1992). Erythrocytes, erythrocyte membranes, neutrophils and platelets as biopsy materials for the assessment of zinc status in humans. British Journal of Nutrition 68, 515527.Google Scholar
Ruz, M., Cavan, K. R., Bettger, W. J., Thompson, L. U., Berry, M. & Gibson, R. S. (1991). Development of a dietary model for the study of mild zinc deficiency in humans and evaluation of some biochemical and functional indices of zinc status. American Journal of Clinical Nutrition 53, 12951303.Google Scholar
Ruz, M. & Solomons, N. W. (1990). Mineral excretion during acute dehydrating diarrhea treated with oral rehydration therapy. Pediatric Research 27, 170175.Google Scholar
Sandström, B. (1989). Dietary pattern and zinc supply. In Zinc in Human Biology (International Life Sciences Institute Human Nutrition Reviews), pp. 351363 [Mills, C. F. editor]. Berlin: Springer-Verlag.Google Scholar
Sandström, B., Almgren, A., Kivistö, B. & Cederblad, A. (1989). Effect of protein level and protein source on zinc absorption in humans. Journal of Nutrition 119, 4853.Google Scholar
Sandström, B., Arvidsson, B., Cederblad, Å. & Björn-Rasmussen, E. (1980). Zinc absorption from composite meals. 1. The significance of wheat extraction rate, zinc, calcium, and protein content in meals based on bread. American Journal of Clinical Nutrition 33, 739745.Google Scholar
Sandström, B. & Lönnerdal, B. (1989). Promoters and antagonists of zinc absorption. In Zinc in Human Biology (International Life Sciences Institute Human Nutrition Reviews), pp. 5778 [Mills, C. F. editor]. Berlin: Springer-Verlag.Google Scholar
Schiliro, G., Russo, A., Azzia, N., Mancuso, G. R., Di Gregorio, F. D., Romeo, M. A., Fallico, R. & Sciacca, S. (1987). Leucocyte alkaline phosphatase (LAP): a useful marker of zinc status in β-thalassemic patients. American Journal of Pediatric Hematology/Oncology 9, 149152.Google Scholar
Schlesinger, L., Arevalo, M., Arredondo, S., Diaz, M., Lönnerdal, B. & Stekel, A. (1992). Effect of a zinc-fortified formula on immunocompetence and growth of malnourished infants. American Journal of Clinical Nutrition 56, 491498.Google Scholar
Shrimpton, R., Alencar, F. H., Vasconcelos, J. C. & Rocha, Y. R. (1985). Effect of maternal zinc supplementation on the growth and diarrhoeal status of breast fed infants. Nutrition Research Suppl. 1, 338S342S.Google Scholar
Shrimpton, R., Marinho, H. A., Rocha, Y. S. & Alencar, F. H. (1983). Zinc supplementation in urban Amazonian mothers: concentrations of Zn and retinol in maternal serum and milk. Preceedings of the Nutrition Society 42, 122A.Google Scholar
Simmer, K., Ahmed, S., Carlsson, L. & Thompson, R. P. H. (1990). Breast milk zinc and copper concentrations in Bangladesh. British Journal of Nutrition 63, 9196.Google Scholar
Simmer, K., Khanum, S., Carlsson, L. & Thompson, R. P. H. (1988). Nutritional rehabilitation in Bangladesh – the importance of zinc. American Journal of Clinical Nutrition 47, 10361040.Google Scholar
Simmer, K., Lort-Phillips, L., James, C. & Thompson, R. P. H. (1991). A double-blind trial of zinc supplementation in pregnancy. European Journal of Clinical Nutrition 45, 139144.Google Scholar
Simmer, K. & Thompson, R. P. H. (1985). Maternal zinc and intrauterine growth retardation. Clinical Science 68, 395399.Google Scholar
Smit-Vanderkooy, P. D. & Gibson, R. S. (1987). Food consumption patterns of Canadian preschool children in relation to zinc and growth status. American Journal of Clinical Nutrition 45, 609616.Google Scholar
Smith, J. C., Udomkesmalee, E. & Dhanamitta, S. (1993). Effect of vitamin A and zinc supplementation of children in Thailand and Belize, Central America. International Congress of Nutrition XV, p. 618 (Abstr.).Google Scholar
Solomons, N. W. (1981). Zinc and copper in human nutrition. In Nutrition in the 1980s: Constraints on Our Knowledge (Progress in Clinical and Biological Research Vol. 67), pp. 97127 [Selvey, N. and White, P. L. editors]. New York: Alan R. Liss.Google Scholar
Solomons, N. W. (1986). Competitive interaction of iron and zinc in the diet: consequences for human nutrition. Journal of Nutrition 116, 927935.Google Scholar
Solon, M. A. (1986). Control of vitamin A deficiency by education and the public health approach. In Vitamin A Deficiency and its Control, pp. 285318 [Bauernfeind, J. C. editor]. New York: Academic Press.Google Scholar
Soltan, M. H. & Jenkins, D. M. (1982). Maternal and fetal plasma zinc concentration and fetal abnormality. British Journal of Obstetrics and Gynaecology 89, 5658.Google Scholar
Svanberg, U. & Sandberg, A. S. (1988). Improved iron availability in weaning foods. In Improved Young Child Feeding in Eastern and Southern Africa: Household Level Food Technology, pp. 366373 [Alnwick, D.Moses, S. and Schmidt, O. G. editors]. Ottawa: International Development Research Center.Google Scholar
Swanson, C. A. & King, J. C. (1987). Zinc and pregnancy outcome. American Journal of Clinical Nutrition 46, 763771.Google Scholar
Tao, S.-H., Spivey Fox, M. R., Phillippy, B. Q., Fry, B. E., Johnson, M. L. & Johnston, M. R. (1986). Effects of inositol phosphates on mineral utilization. Federation Proceedings 45, 819.Google Scholar
Thauvin, E., Fusselier, M., Arnaud, J., Faure, H., Favier, M., Coudray, C., Richard, M.-J. & Favier, A. (1992). Effects of a multivitamin mineral supplement on zinc and copper status during pregnancy. Biological Trace Element Research 32, 405414.Google Scholar
Thompson, R. P. H. (1991). Assessment of zinc status. Proceedings of the Nutrition Society 50, 1928.Google Scholar
Tomkins, A., Behrens, R. & Roy, S. (1993). The role of zinc and vitamin A deficiency in diarrhoeal syndromes in developing countries. Proceedings of the Nutrition Society 52, 131142.Google Scholar
Torre, M., Rodriguez, A. R. & Saura-Calixto, F. (1991). Effects of dietary fiber and phytic acid on mineral availability. CRC Critical Reviews in Food Science and Nutrition 30, 122.Google Scholar
Turnlund, J. R., King, J. C., Keyes, W. R., Gong, B. & Michel, M. C. (1984). A stable isotope study of zinc absorption in young men: effects of phytate and α-cellulose. American Journal of Clinical Nutrition 40, 10711077.Google Scholar
Tuttle, S., Aggett, P. J., Campbell, D. & MacGillivray, I. (1985). Zinc and copper in human pregnancy: a longitudinal study in normal primigravidae and in primigravidae at risk of delivering a growth retarded baby. American Journal of Clinical Nutrition 41, 10321041.Google Scholar
Udomkesmalee, E., Dhanamitta, S., Sirisinha, S., Charoenkiatkul, S., Tuntipopipat, S., Banjong, O., Rojroongwasinkul, N., Kramer, T. R. & Smith, J. C. (1992). Effect of vitamin A and zinc supplementation on the nutriture of children in Northeast Thailand. American Journal of Clinical Nutrition 56, 5057.Google Scholar
Udomkesmalee, E., Dhanamitta, S., Yhoung-Aree, J., Rojroongwasinkul, N. & Smith, J. C. (1990). Biochemical evidence suggestive of suboptimal zinc and vitamin A status in schoolchildren in Northeast Thailand. American Journal of Clinical Nutrition 52, 564567.Google Scholar
United Nations. (1991). Some options for improving nutrition in the 1990s. SCN News No. 7, Suppl.1618.Google Scholar
Valberg, L. S., Flanagan, P. R. & Chamberlain, M. J. (1984). Effects of iron, tin, and copper on zinc absorption in humans. American Journal of Clinical Nutrition 40, 536541.Google Scholar
Walker, A. F. (1990). The contribution of weaning foods to protein-energy malnutrition. Nutrition Research Reviews 3, 2547.Google Scholar
Wallock, L. M., King, J. C., Hambidge, K. M., English-Westcott, J. E. & Pritts, J. (1993). Meal-induced changes in plasma, erythrocyte, and urinary zinc concentrations in adult women. American Journal of Clinical Nutrition 58, 695701.Google Scholar
Walravens, P. A., Chakar, A., Mokni, R., Denise, J. & Lemonnier, D. (1992). Zinc supplements in breastfed infants. Lancet 340, 683685.Google Scholar
Walravens, P. A. & Hambidge, K. M. (1976). Growth of infants fed a zinc supplemented formula. American Journal of Clinical Nutrition 29, 11141121.Google Scholar
Walravens, P. A., Hambidge, K. M. & Koepfer, D. M. (1989). Zinc supplementation in infants with a nutritional pattern of failure to thrive: a double-blind controlled study. Pediatrics 83, 532538.Google Scholar
Walravens, P. A., Krebs, N. F. & Hambidge, K. M. (1983). Linear growth of low income preschool children receiving a zinc supplement. American Journal of Clinical Nutrition 38, 195201.Google Scholar
Wells, J. L., James, D. K., Luxton, R. & Pennock, C. A. (1987). Maternal leucocyte zinc deficiency at start of third trimester as a predictor of fetal growth retardation. British Medical Journal 294, 10541056.Google Scholar
Wise, A. (1983). Dietary factors determining the biological activities of phytate. Nutrition Abstracts and Reviews 53, 791806.Google Scholar
Xue-Cun, C., Tai-An, Y., Jin-Sheng, H., Qui-Yan, M., Zhi-Min, H. & Li-Xiang, L. (1985). Low levels of zinc in hair and blood, pica, anorexia, and poor growth in Chinese preschool children. American Journal of Clinical Nutrition 42, 694700.Google Scholar
Zlotkin, S. H. & Casselman, C. (1988). Diurnal variation in urinary zinc excretion and the use of zinc/Cr ratio from random urine samples to monitor zinc status. Canadian Federation of Biological Sciences, Quebec, p. 624 (Abstr.).Google Scholar
You have Access
168
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Zinc Nutrition in Developing Countries
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Zinc Nutrition in Developing Countries
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Zinc Nutrition in Developing Countries
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *