Skip to main content
×
×
Home

Ecological preferences of large carnivores in remote, high-altitude protected areas: insights from Buxa Tiger Reserve, India

  • Mriganka Shekhar Sarkar (a1), Harika Segu (a1), J. V. Bhaskar (a2), Rajendra Jakher (a2), Swati Mohapatra (a1), K. Shalini (a1), S. Shivaji (a1) and P. Anuradha Reddy (a1)...
Abstract

Difficult terrain and inclement weather limit our knowledge of large predators, such as the tiger Panthera tigris, in the Himalayas. A lack of empirical data on large carnivores can lead to mismanagement of protected areas and population declines. We used non-invasive genetic and remote sensing data to inform the management of such high-altitude protected areas. We used the tiger as a focal species to investigate prey preference and habitat suitability in India's Buxa Tiger Reserve, which encompasses several eco-geographical regions in the Himalayan and subtropical zones. During 2010–2013, 909 faecal samples were collected, of which 372 were confirmed, using genetic analysis, to be of tiger origin. Fourteen prey species/groups were identified in 240 tiger faecal samples, largely dominated by goats Capra spp. (26.59%), rhesus macaques Macaca mulatta (22.22%) and cattle Bos spp. (20.63%). Considering only the wild prey species for which survey data are available, however, and frequency of occurrence of prey in faecal samples, hog deer Axis porcinus, sambar deer Rusa unicolor and spotted deer Axis axis were the most preferred prey species. Using faecal sample locations to examine the relationship between tiger presence and environmental features indicated that the niche for tigers is narrower than the available protected area: c. 62% of core protected area is suitable, of which only 17% is highly suitable for tigers. Tigers prefer dense vegetation, open forests, riverine vegetation and areas close to water sources. Faecal sample-based studies have the potential to generate data that can help us understand the ecology of elusive carnivore species inhabiting high-altitude landscapes.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Ecological preferences of large carnivores in remote, high-altitude protected areas: insights from Buxa Tiger Reserve, India
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Ecological preferences of large carnivores in remote, high-altitude protected areas: insights from Buxa Tiger Reserve, India
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Ecological preferences of large carnivores in remote, high-altitude protected areas: insights from Buxa Tiger Reserve, India
      Available formats
      ×
Copyright
Corresponding author
(Corresponding author) E-mail anuradha@ccmb.res.in
Footnotes
Hide All
*

Also at: Wildlife Institute of India, Dehradun, India

Supplementary material for this article can be found at https://doi.org/10.1017/S0030605317000060

Footnotes
References
Hide All
Acharjyo, L.N. & Mishra, C.G. (1981) Notes on weight and size at birth of eight species of Indian wild ungulates in captivity. Journal of the Bombay Natural History Society, 78, 373375.
Ackerman, B.B., Lindzey, F.G. & Hemker, T.P. (1984) Cougar food habits in southern Utah. The Journal of Wildlife Management, 48, 147155.
Aigner, P.A., Block, W.M. & Morrison, M.L. (1998) Effect of firewood harvesting on birds in a California oak-pine woodland. The Journal of Wildlife Management, 62, 485496.
Bagchi, S., Goyal, S.P. & Sankar, K. (2003) Prey abundance and prey selection by tigers (Panthera tigris) in a semi-arid, dry deciduous forest in western India. Journal of Zoology, 260, 285290.
Bahuguna, A., Sahajpal, V., Goyal, S.P., Mukherjee, S.K. & Thakur, V. (2010) Species Identification from Guard Hair of Selected Indian Mammals: A Reference Guide. Wildlife Institute of India, Dehradun, India.
Bell, D.J., Oliver, W.L.R. & Ghose, R.K. (1990) The hispid hare Caprolagus hispidus. In Rabbits, Hares and Pikas: Status Survey and Conservation Action Plan (eds Chapman, J.A. & Flux, J.E.C.), pp. 128136. IUCN, Gland, Switzerland.
Bhagavatula, J. & Singh, L. (2006) Genotyping faecal samples of Bengal tiger (Panthera tigris tigris) for population estimation: a pilot study. BMC Genetics, 7, 48.
Bhattacharjee, S., Kumar, V., Chandrasekhar, M., Malviya, M., Ganswindt, A., Ramesh, K. et al. (2015) Glucocorticoid stress responses of reintroduced tigers in relation to anthropogenic disturbance in Sariska Tiger Reserve in India. PLoS One, 10(6), e0127626.
Biswas, S. & Sankar, K. (2002) Prey abundance and food habit of tigers (Panthera tigris tigris) in Pench National Park, Madhya Pradesh, India. Journal of Zoology, 256, 411420.
Calenge, C. (2006) The package “adehabitat” for the R software: a tool for the analysis of space and habitat use by animals. Ecological Modelling, 197, 516519.
Clark, J.D., Dunn, J.E. & Smith, K.G. (1993) A multivariate model of female black bear habitat use for a geographic information system. The Journal of Wildlife Management, 57, 519526.
Colwell, R.K. (2006) Programme Estimate S v. 8.0.0. University of Connecticut, Storrs, USA.
Das, B.K. (2008) The policy of reduction of cattle populations from protected areas: a case study from Buxa Tiger Reserve, India. Conservation & Society, 6, 185189.
Datta, A., Anand, M.O. & Naniwadekar, R. (2008) Empty forests: large carnivore and prey abundance in Namdapha National Park, north-east India. Biological Conservation, 141, 14291435.
Davis, W.B. & Schmidly, D.J. (1994) Axis deer. In The Mammals of Texas Online Edition. http://www.nsrl.ttu.edu/tmot1/cervaxis.htm [accessed 17 August 2016].
Dinerstein, E. & Mehta, J.N. (1989) The clouded leopard in Nepal. Oryx, 23, 199201.
Fox, J.L., Sinha, S.P., Chundawat, R.S. & Das, P.K. (1991) Status of the snow leopard Panthera uncia in northwest India. Biological Conservation, 55, 283298.
Garshelis, D. & Steinmetz, R. (2016) Ursus thibetanus. In The IUCN Red List of Threatened Species 2016: e.T22824A45034242. Http://dx.doi.org/10.2305/IUCN.UK.2016-3.RLTS.T22824A45034242.en [accessed 3 February 2017].
Giri, S., Aryal, A., Koirala, R.K., Adhikari, B. & Raubenheimer, D. (2011) Feeding ecology and distribution of Himalayan serow (Capricornisthar) in Annapurna Conservation Area, Nepal. World Journal of Zoology, 6, 8085.
Goodrich, J., Lynam, A., Miquelle, D., Wibisono, H., Kawanishi, K., Pattanavibool, A. et al. (2015) Panthera tigris. In The IUCN Red List of Threatened Species 2015: e.T15955A50659951. Http://dx.doi.org/10.2305/IUCN.UK.2015-2.RLTS.T15955A50659951.en [accessed 3 February 2017].
Gour, D.S., Bhagavatula, J., Bhavanishankar, M., Reddy, P.A., Gupta, J.A., Sarkar, M.S. et al. (2013) Philopatry and dispersal patterns in tiger (Panthera tigris). PLoS ONE, 8(7), e66956.
Graham, M.H. (2003) Confronting multicollinearity in ecological multiple regression. Ecology, 84, 28092815.
Grassman, L., Lynam, A., Mohamad, S., Duckworth, J.W., Bora, J., Wilcox, D. et al. (2016) Neofelis nebulosa. In The IUCN Red List of Threatened Species 2016: e.T14519A97215090. Http://dx.doi.org/10.2305/IUCN.UK.2016-1.RLTS.T14519A97215090.en [accessed 3 February 2017].
Hall, T.E. & Farrell, T.A. (2001) Fuelwood depletion at wilderness campsites: extent and potential ecological significance. Environmental Conservation, 28, 241247.
Hayward, M.W., Henschel, P., O'Brien, J., Hofmeyr, M., Balme, G. & Kerley, G.I.H. (2006a) Prey preferences of the leopard (Panthera pardus). Journal of Zoology, 270, 298313.
Hayward, M.W., Jędrzejewski, W. & Jedrzejewska, B. (2012) Prey preferences of the tiger Panthera tigris . Journal of Zoology, 286, 221231.
Hayward, M.W., O'Brien, J., Hofmeyr, M. & Kerley, G.I.H. (2006b) Prey preferences of the African wild dog Lycaon pictus (Canidae: Carnivora): ecological requirements for conservation. Journal of Mammalogy, 87, 11221131.
Hirzel, A.H., Hausser, J., Chessel, D. & Perrin, N. (2002) Ecological-niche factor analysis: how to compute habitat-suitability maps without absence data? Ecology, 83, 20272036.
Hirzel, A.H., Lay, G.L., Helfer, V., Randin, C. & Guisan, A. (2006) Evaluating the ability of habitat suitability models to predict species presences. Ecological Modelling, 199, 142152.
Hurlbert, S.H. (1984) Pseudo replication and the design of ecological field experiments. Ecological Monographs, 54, 187211.
Hutchinson, G.E. (1957) Concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology, 22, 415427.
Hwang, Y.T. & Larivière, S. (2005) Lutrogale perspicillata. Mammalian Species, 786, 14, http://dx.doi.org/10.1644/786.1.
IUCN (2016) The IUCN Red List of Threatened Species 2016-3. Http://www.iucnredlist.org [accessed 3 February 2017].
Jackson, R., Mallon, D., McCarthy, T., Chundaway, R.A. & Habib, B. (2008) Panthera uncia. In The IUCN Red List of Threatened Species 2008: e.T22732A9381126. Http://dx.doi.org/10.2305/IUCN.UK.2008.RLTS.T22732A9381126.en [accessed 3 February 2017].
Jackson, R.M., Roe, J.D., Wangchuk, R. & Hunter, D.O. (2006) Estimating snow leopard population abundance using photography and capture–recapture techniques. Wildlife Society Bulletin, 34, 772781.
Jacobs, J. (1974) Quantitative measurement of food selection. Oecologia, 14, 413417.
Jenness, J. (2010) DEM Surface Tools v. 2.1. 254. Jenness Enterprises, Flagstaff, USA. Http://www.jennessent.com/arcgis/surface_area.htm [accessed 5 January 2012].
Kapfer, P.M., Streby, H.M., Gurung, B., Simcharoen, A., McDougal, C.C. & Smith, J.L.D. (2011) Fine-scale spatio-temporal variation in tiger Panthera tigris diet: effect of study duration and extent on estimates of tiger diet in Chitwan National Park, Nepal. Wildlife Biology, 17, 277285.
Karanth, K.U., Chundawat, R.S., Nichols, J.D. & Kumar, N.S. (2004) Estimation of tiger densities in the tropical dry forests of Panna, Central India, using photographic capture–recapture sampling. Animal Conservation, 7, 285290.
Karanth, K.U. & Nichols, J.D. (1998) Estimation of tiger densities in India using photographic captures and recaptures. Ecology, 79, 28522862.
Karanth, K.U. & Sunquist, M.E. (1995) Prey selection by tiger, leopard and dhole in tropical forests. Journal of Animal Ecology, 64, 439450.
Kleiman, D.G., Geist, V. & McDade, M.C. (eds) (2003) Bovids VI: Sheep, goats, and relatives (Caprinae). In Grzinek's Animal Life Encyclopedia, Volume 16, 2nd edition (ed. Hutchins, M.), pp. 8798. Thomson-Gale Publishing, Detroit, USA.
Lee, O., Lee, S., Nam, D.-H. & Lee, H.Y. (2013) Molecular analysis for investigating dietary habits: genetic screening of prey items in scat and stomach contents of leopard cats Prionailurus bengalensis euptilurus . Zoological Studies, 52, 45, http://dx.doi.org/10.1186/1810-522X-52-45.
Lima, S.L. (1998) Nonlethal effects in the ecology of predator–prey interactions. BioScience, 48, 2534.
Liu, J., Linderman, M., Ouyang, Z., An, L., Yang, J. & Zhang, H. (2001) Ecological degradation in protected areas: the case of Wolong Nature Reserve for giant pandas. Science, 292, 98101.
Manly, B.F., Macdonald, L., Thomas, D., Macdonald, T.L. & Erickson, W.P. (2002) Resource Selection by Animals: Statistical Design and Analysis for Field Studies, 2nd edition. Kluwer Academic Publishers, London, UK.
Marucco, F., Pletscher, D.H. & Boitani, L. (2008) Accuracy of scat sampling for carnivore diet analysis: wolves in the Alps as a case study. Journal of Mammalogy, 89, 665673.
Menge, B.A. (1995) Indirect effects in marine rocky intertidal interaction webs: patterns and importance. Ecological Monographs, 65, 2174.
Menge, B.A. (1997) Detection of direct versus indirect effects: were experiments long enough? The American Naturalist, 149, 801823.
Mishra, C. (1997) Livestock depredation by large carnivores in the Indian trans-Himalaya: conflict perceptions and conservation prospects. Environmental Conservation, 24, 338343.
Mishra, C., Madhusudan, M.D. & Datta, A. (2006) Mammals of the high altitudes of western Arunachal Pradesh, eastern Himalaya: an assessment of threats and conservation needs. Oryx, 40, 2935.
Mukherjee, S., Goyal, S.P. & Chellam, R. (1994) Refined techniques for the analysis of Asiatic lion Panthera leo persica scats. Acta Theriologica, 39, 425430.
Nawaz, M.A., Martin, J. & Swenson, J.E. (2014) Identifying key habitats to conserve the threatened brown bear in the Himalaya. Biological Conservation, 170, 198206.
Parker, S.B. (1990) Grzimek's Encyclopedia of Mammals, Volume 4. McGraw-Hill, New York, USA.
Pearson, R.G., Raxworthy, C.J., Nakamura, M. & Townsend Peterson, A. (2007) Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. Journal of Biogeography, 34, 102117.
Perrin, N. (1984) Contribution a l'ecologie du genre Cepaea (Gastropoda): Approche descriptive etexperimentale de l'habitat et de la niche ecologique. PhD thesis. University of Lausanne, Lausanne, Switzerland.
Polis, G.A. (1999) Why are parts of the world green? Multiple factors control productivity and the distribution of biomass. Oikos, 86, 315.
Polis, G.A. & Hurd, S.D. (1996) Allochthonous input across habitats, subsidized consumers and apparent trophic cascades: examples from the ocean–land interface. In Food Webs: Integration of Patterns and Dynamics (eds Polis, G. & Winemiller, K.), pp. 275285. Chapman & Hall, New York, USA.
Polis, G.A. & Strong, D.R. (1996) Food web complexity and community dynamics. The American Naturalist, 147, 813846.
R Development Core Team (2009) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
Ramakrishnan, U., Coss, R.G. & Pelkey, N.W. (1999) Tiger decline caused by the reduction of large ungulate prey: evidence from a study of leopard diets in southern India. Biological Conservation, 89, 113120.
Reddy, P.A., Gour, D.S., Bhavanishankar, M., Jaggi, K., Hussain, S.M., Harika, K. & Shivaji, S. (2012) Genetic evidence of tiger population structure and migration within an isolated and fragmented landscape in northwest India. PLoS ONE, 7(1), e29827.
Reddy, P.A., Ramesh, K., Sarkar, M.S., Srivastava, A., Bhavanishankar, M. & Shivaji, S. (2016) Significance of mate selection and adult sex ratio in tiger reintroduction/reinforcement programs. Journal of Zoology, 299, 132141.
Reed, J.Z., Tollit, D.J., Thompson, P. & Amos, W. (1997) Molecular scatology: the use of molecular genetic analysis to assign species, sex and individual identity to seal faeces. Molecular Ecology, 6, 225234.
Ritchie, E.G. & Johnson, C.N. (2009) Predator interactions, mesopredator release and biodiversity conservation. Ecology Letters, 12, 982998.
Rosenstock, S.S. (1998) Influence of gambel oak on breeding birds in ponderosa pine forests of northern Arizona. The Condor, 100, 485492.
Sagar, R. & Singh, J.S. (2004) Local plant species depletion in a tropical dry deciduous forest of northern India. Environmental Conservation, 31, 5562.
Sankar, K. & Johnsingh, A.J.T. (2002) Food habits of tiger (Panthera tigris) and leopard (Panthera pardus) in Sariska Tiger Reserve, Rajasthan, India, as shown by scat analysis. Mammalia, 66, 285289.
Sarkar, A. & Das, A.P. (2012) Contribution of forest flora in rural livelihood: a study of Jayanti, Buxa Tiger Reserve, West Bengal, India. Pleione, 6, 132140.
Sathyakumar, S. (2001) Status and management of Asiatic black bear and Himalayan brown bear in India. Ursus, 12, 2129.
Sathyakumar, S., Bashir, T., Bhattacharya, T. & Poudyal, K. (2011) Assessing mammal distribution and abundance in intricate eastern Himalayan habitats of Khangchendzonga, Sikkim, India. Mammalia, 75, 257268.
Schoener, T.W. (1993) On the relative importance of direct vs indirect effects in ecological communities. In Mutualism and Community Organization: Behavioral, Theoretical, and Food-Web Approaches (eds Kawanabe, H., Cohen, J.E. & Iwasaki, K.), pp. 365411. Oxford University Press, Oxford, UK.
Shehzad, W., Riaz, T., Nawaz, M.A., Miquel, C., Poillot, C., Shah, S.A. et al. (2012) Carnivore diet analysis based on next-generation sequencing: application to the leopard cat (Prionailurus bengalensis) in Pakistan. Molecular Ecology, 21, 19511965.
Sih, A., Crowley, P., McPeek, M., Petranka, J. & Strohmeier, K. (1985) Predation, competition and prey communities: a review of field experiments. Annual Review of Ecology and Systematics, 16, 269311.
Sih, A., Englund, G. & Wooster, D. (1998) Emergent impacts of multiple predators on prey. Trends in Ecology & Evolution, 13, 350355.
Singh, M. & Sinha, A. (2004) Life history traits: ecological adaptations or phylogenetic relics? In Macaque Societies: A Model for the Study of Social Organization (eds Thierry, B., Singh, M. & Kaumanns, W.), pp. 8083. Cambridge University Press, Cambridge, UK.
Sinha, R.K. & Das, B.K. (2003) The Buxa case study. Unpublished paper presented at the IVth World Parks Congress, Durban, South Africa.
Smith, A.T., Xie, Y., Hoffmann, R.S., Lunde, D., MacKinnon, J., Wilson, D.E. & Wozencraft, W.C. (2010) A Guide to the Mammals of China. Princeton University Press, Princeton, USA.
Smith, J.L.D., McDougal, C., Ahearn, S.C., Joshi, A. & Conforti, K. (1999) Metapopulation structure of tigers in Nepal. In Riding the Tiger: Tiger Conservation in Human-Dominated Landscapes (eds Seidensticker, J., Christie, S. & Jackson, P.), pp. 176189. Cambridge University Press, Cambridge, UK.
Stein, A.B., Athreya, V., Gerngross, P., Balme, G., Henschel, P., Karanth, U. et al. (2016) Panthera pardus. In The IUCN Red List of Threatened Species 2016: e.T15954A102421779. Http://www.iucnredlist.org/details/15954/0 [accessed 3 February 2017].
Wang, S.W. & Macdonald, D.W. (2009) The use of camera traps for estimating tiger and leopard populations in the high altitude mountains of Bhutan. Biological Conservation, 142, 606613.
Wilson, D.E. & Burnie, D. (2001) Animal: The Definitive Visual Guide to the World's Wildlife. Dorling Kindersley, London, UK.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Oryx
  • ISSN: 0030-6053
  • EISSN: 1365-3008
  • URL: /core/journals/oryx
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Type Description Title
PDF
Supplementary materials

Sarkar et al. supplementary material
Supplementary appendix and figures

 PDF (378 KB)
378 KB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 40
Total number of PDF views: 181 *
Loading metrics...

Abstract views

Total abstract views: 873 *
Loading metrics...

* Views captured on Cambridge Core between 31st July 2017 - 21st July 2018. This data will be updated every 24 hours.