Skip to main content Accessibility help

The ecology of plant extinction: rates, traits and island comparisons

  • Alan Gray (a1)


Although there is increasing evidence for a sixth mass extinction, relatively few plants have been officially declared extinct (<150 are categorized as Extinct on the IUCN Red List). The Red List, although the data are neither perfect nor comprehensive, is perhaps the most reliable indicator of extinction and extinction threat. Here, data collated from the Red List, of Extinct plant species and of Critically Endangered plant species with populations in decline, are examined to address three questions: (1) How do background, continental, and island plant extinction rates compare? (2) Are biological and physical island parameters associated with plant extinction? (3) Are any plant traits associated with extinction and if so do these differ between islands and continents? The background rate for plant extinction is estimated to be 0.05–0.13 E/MSY (extinctions per million species-years) and the Red List data are above these background rates and also above a higher extinction rate of 0.15 E/MSY. The data indicate that plant extinctions are dominated by insular species. The Red List extinction data are associated with lower competitive ability and lower climate change velocities, and anthropogenic factors. Analyses using only Critically Endangered species whose populations are in decline (arguably the species most at risk of extinction in the near future) largely mirrors this pattern and suggests that drivers of plant extinction may have an inertia that could last well into the future.


Corresponding author


Hide All

The supplementary material for this article is available at



Hide All
Akçakaya, H.R., Keith, D.A., Burgman, M., Butchart, S.H.M., Hoffmann, M., Regan, H.M. et al. (2017) Inferring extinctions III: A cost-benefit framework for listing extinct species. Biological Conservation, 214, 336342.
CBD (Convention on Biological Diversity) (2017) Updated Global Strategy for Plant Conservation 2011–2020. Https:// [accessed 15 March 2018],
Ceballos, G., Ehrlich, P.R., Barnosky, A.D., García, A., Pringle, R.M. & Palmer, T.M. (2015) Accelerated modern human–induced species losses: entering the sixth mass extinction. Science Advances, 1, e1400253.
Cleveland, W.S. (1979) Robust locally weighted regression and smoothing scatterplots. Journal of the American Statistical Association, 74, 829836.
Cronk, Q. (2016) Plant extinctions take time. Science, 353, 446447.
Davis, A. & Goldman, M.J. (2017) Beyond payments for ecosystem services: considerations of trust, livelihoods and tenure security in community-based conservation projects. Oryx,
De Vos, J.M., Joppa, L.N., Gittleman, J.L., Stephens, P.R. & Pimm, S.L. (2015) Estimating the normal background rate of species extinction. Conservation Biology, 29, 452462.
Fisher, J. (2012) No pay, no care? A case study exploring motivations for participation in payments for ecosystem services in Uganda. Oryx, 46, 4554.
Gilbert, B. & Levine, J.M. (2013) Plant invasions and extinction debts. Proceedings of the National Academy of Sciences of the United States of America, 110, 17441749.
Gray, A. & Cavers, S. (2014) Island biogeography, the effects of taxonomic effort and the importance of island niche diversity to single island endemic species. Systematic Biology, 63, 5565.
Gray, A., Perry, A., Cavers, S., Eastwood, A., Biermann, M., Darlow, A. et al. (2017) Hybrid plants preserve unique genetic variation in the St Helena endemic trees Commidendrum rotundifolium DC Roxb. and C. spurium (G. forst.) DC. Conservation Genetics, 18, 241246.
Hanski, I. (2000) Extinction debt and species credit in boreal forests: modelling the consequences of different approaches to biodiversity conservation. Annales Zoologici Fennici, 37, 271280.
Hothorn, T., Hornik, K., Wiel, M.A.V.D. & Zeileis, A. (2008) Implementing a class of permutation tests: the coin package. Journal of Statistical Software, 28, 123.
IUCN (2001) IUCN Red List Categories and Criteria Version 3.1. IUCN Species Survival Commission. IUCN, Gland, Switzerland, and Cambridge, UK.
IUCN (2016) World Conservation Congress Hawai'i 2016: 040 Integrating Autochthonous Forest Genetic Diversity into Protected Area Conservation Objectives. Https:// [accessed 15 March 2018].
IUCN (2017) The IUCN Red List of Threatened Species v. 2017-1. Http:// [accessed 22 August 2017].
Keith, D.A., Butchart, S.H.M., Regan, H.M., Harrison, I., Akçakaya, H.R., Solow, A.R. & Burgman, M.A. (2017) Inferring extinctions I: a structured method using information on threats. Biological Conservation, 214, 320327.
KEW (2017) The State of the World's Plants. Royal Botanic Gardens, Kew, UK.
Kuussaari, M., Bommarco, R., Heikkinen, R.K., Helm, A., Krauss, J., Lindborg, R. et al. (2009) Extinction debt: a challenge for biodiversity conservation. Trends in Ecology & Evolution, 24, 564571.
Levin, D.A. & Wilson, A.C. (1976) Rates of evolution in seed plants: net increase in diversity of chromosome numbers and species numbers through time. Proceedings of the National Academy of Sciences of the United States of America, 73, 20862090.
Loarie, S.R., Duffy, P.B., Hamilton, H., Asner, G.P., Field, C.B. & Ackerly, D.D. (2009) The velocity of climate change. Nature, 462, 10521055.
Macdicken, K., Jonsson, Ö., Piña, L., Marklund, L., Maulo, S., Contessa, V. et al. (2016) The Global Forest Resources Assessment. The Food and Agriculture Organization of the United Nations, Rome, Italy.
May, R.M. (2011) Why worry about how many species and their loss? PLoS Biol, 9, e1001130.
Pimm, S.L., Jenkins, C.N., Abell, R., Brooks, T.M., Gittleman, J.L., Joppa, L.N. et al. (2014) The biodiversity of species and their rates of extinction, distribution, and protection. Science, 344, 1246752.
R Development Core Team (2017) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Http:// [accessed 22 August 2017].
Stanley, S.M. (1985) Rates of evolution. Paleobiology, 11, 1326.
UNEP (United Nations ) (2004) Island Directory. Http:// [accessed 22 August 2017]
Vellend, M., Baeten, L., Becker-Scarpitta, A., Boucher-Lalonde, V., Mccune, J.L., Messier, J. et al. (2017) Plant biodiversity change across scales during the Anthropocene. Annual Review of Plant Biology, 68, 563586.
Weigelt, P. & Kreft, H. (2013) Quantifying island isolation—insights from global patterns of insular plant species richness. Ecography, 36, 417429.
Weigelt, P., Daniel Kissling, W., Kisel, Y., Fritz, S.A., Karger, D.N., Kessler, M. et al. (2015) Global patterns and drivers of phylogenetic structure in island floras. Scientific Reports, 5, 12213.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

  • ISSN: 0030-6053
  • EISSN: 1365-3008
  • URL: /core/journals/oryx
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Type Description Title
Supplementary materials

Gray supplementary material
Gray supplementary material 1

 PDF (107 KB)
107 KB


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed