Skip to main content Accessibility help

Refining conservation strategies using distribution modelling: a case study of the Endangered Arabian tahr Arabitragus jayakari

  • Steven Ross (a1), Mansoor H. Al Jahdhami (a1) and Haitham Al Rawahi (a1)


The Endangered Arabian tahr Arabitragus jayakari is a rare and little known mountain ungulate, endemic to the 650 km mountain chain of northern Oman and the United Arab Emirates. To investigate the species’ status and distribution we conducted a systematic camera-trap survey across its entire range. We used occupancy modelling to quantify habitat associations and create a predictive distribution model for the species. We found that tahr preferred steep, rugged mountain habitats, and occupancy was much higher in protected areas. Arabian tahr were subject to anthropogenic threats, with occupancy decreasing with closer proximity to villages, and with increasing numbers of domestic goats. Tahr occupancy was also negatively associated with elevation and rainfall, with peak occupancy at 800–1,000 m. Although previous assessments have associated the entire Hajar Mountain range with the Arabian tahr, we found that only 23.9%, or 6,986 km2, of the mountain range was occupied. This reduction in area of occupancy reflects recent population declines, but also our improved methods of assessment. Based on our findings, future conservation efforts should focus on creating more protected areas, control measures to partition goats from core habitats of the Arabian tahr, and restoration and captive reinforcement within suitable habitats unoccupied by Arabian tahr. As infrastructure development is a threat to the Arabian tahr, our occurrence probability map provides a useful tool for spatial planning of developments to reduce impacts on the species.



Hide All

Previously at: The National Field Research Centre for Environmental Conservation, Diwan of Royal Court, Muscat, Oman



Hide All
Al Charaabi, Y. & Al Yahyai, S. (2013) Projection of future changes in rainfall and temperature patterns in Oman. Journal of Earth Science and Climatic Change, 4, 154161.
Al Hikmani, H., Zabanoot, S., Al Shahari, T., Zabanoot, N., Al Hikmani, K. & Spalton, A. (2015) Status of the Arabian gazelle, Gazella arabica (Mammalia: Bovidae), in Dhofar, Oman. Zoology in the Middle East, 61, 295299.
Al Jahdhami, M.H., Al Mahdoury, S. & Al Amri, H. (2011) The reintroduction of Arabian oryx to the Al Wusta Wildlife Reserve: 30 years on. In Global Reintroduction Perspectives: 2011. More Case Studies from Around the Globe (ed. Soorae, P.S.), pp. 194198. IUCN/SSC Re-introduction Specialist Group, Gland, Switzerland, and Environment Agency, Abu Dhabi, UAE.
Al Majaini, H.M. (1999) Nutritional ecology of the Arabian tahr Hemitragus jayakari Thomas 1984 in Wadi Sareen Reserve area. MSc thesis. Sultan Qaboos University, Muscat, Oman.
Al Rawahi, H. & MacClaren, C. (2015) Wadi Sareen vegetation survey. Unpublished raw data, Oman Earthwatch Programme, Muscat, Oman.
Arnold, T.W. (2010) Uninformative parameters and model selection using Akaike's Information Criterion. The Journal of Wildlife Management, 74, 11751178.
Burnham, K.P. & Anderson, D.R. (2002) Model Selection and Multimodel Inference: A Practical Information-theoretic Approach. Springer-Verlag, New York, USA.
Carranza, S. & Arnold, E.N. (2012) A review of the geckos of the genus Hemidactylus (Squamata: Gekkonidae) from Oman based on morphology, mitochondrial and nuclear data, with descriptions of eight new species. Zootaxa, 3378, 195.
D'Amico, M.E. & Previtali, F. (2012) Edaphic influences of ophiolitic substrates on vegetation in the Western Italian Alps. Plant and Soil, 351, 7395.
Delany, M.J. (1989) The zoogeography of the mammal fauna of southern Arabia. Mammal Review, 19, 133152.
Dutton, R.W. (2016) Field Research in Oman: Past, Present and Future. NFRCEC, Diwan of Royal Court, Sultanate of Oman.
Elith, J. & Leathwick, J.R. (2009) Species distribution models: ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution, and Systematics, 40, 677697.
Eng, J. (2014) ROC analysis: Web-based calculator for ROC curves. Http:// [accessed 1 December 2016].
Engler, R., Guisan, A. & Rechsteiner, L. (2004) An improved approach for predicting the distribution of rare and endangered species from occurrence and pseudo-absence data. Journal of Applied Ecology, 41, 263274.
Fielding, A.H. & Bell, J.F. (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation, 24, 3849.
Fisher, M. (1999) The conservation status of the terrestrial mammals of Oman: a preliminary red list. In The Natural History of Oman: A Festschrift for Michael Gallagher (eds Fisher, M., Ghazanfar, S.A. & Spalton, J.A.), pp. 129146. Backhuys Publishers, Leiden, The Netherlands.
Fois, M., Fenu, G., Lombrana, A.C., Cogoni, D. & Bacchetta, G. (2015) A practical method to speed up the discovery of unknown populations using Species Distribution Models. Journal for Nature Conservation, 24, 4248.
Ghazanfar, S.A. (1991) Vegetation structure and phytogeography of Jabal Shams, an arid mountain in Oman. Journal of Biogeography, 18, 299309.
Gross, J.E., Kneeland, M.C., Reed, D.F. & Reich, R.M. (2002) GIS-based habitat models for mountain goats. Journal of Mammalogy, 83, 218228.
Guillera-Arroita, G., Lahoz-Monfort, J.J., Elith, J., Gordon, A., Kujala, H., Lentini, P.E. et al. (2015) Is my species distribution model fit for purpose? Matching data and models to applications. Global Ecology and Biogeography, 24, 276292.10.1111/geb.12268
Guisan, A. & Thuiller, W. (2005) Predicting species distribution: offering more than simple habitat models. Ecology Letters, 8, 9931009.
Guisan, A., Tingley, R., Baumgartner, J.B., Naujokaitis-Lewis, I., Sutcliffe, P.R., Tulloch, A.I. et al. (2013) Predicting species distributions for conservation decisions. Ecology Letters, 16, 14241435.
Hamel, S. & Côté, S.D. (2007) Habitat use patterns in relation to escape terrain: are alpine ungulate females trading off better foraging sites for safety? Canadian Journal of Zoology, 85, 933943.10.1139/Z07-080
Harrison, D.L. & Gallagher, M.D. (1974) A park to save the Arabian tahr. Oryx, 12, 547549.10.1017/S0030605300012564
Hijmans, R.J., Cameron, S. & Parra, J. (2004) WorldClim, Version 1.4 (release 3). A square kilometer resolution database of global terrestrial surface climate [accessed 16 July 2015].
Hines, J.E. (2006) PRESENCE – Software to estimate patch occupancy and related parameters. Version 10.2. U.S. Geological Survey–Patuxent Wildlife Research Center, Laurel, USA.
Insall, D. (1999) A review of the ecology and conservation of the Arabian tahr. In The Natural History of Oman: A Festschrift for Michael Gallagher (eds Fisher, M., Ghazanfar, S.A. & Spalton, J.A.), pp. 129146. Backhuys Publishers, Leiden, The Netherlands.
Insall, D. (2008) Arabitragus jayakari. In The IUCN Red List of Threatened Species v. 2008: e.T9918A13027045. Http:// [accessed July 2015].
Jenness, J. (2013) DEM Surface Tools for ArcGIS. Jenness Enterprises, Flagstaff, USA.
Kéry, M., Gardner, B. & Monnerat, C. (2010) Predicting species distributions from checklist data using site-occupancy models. Journal of Biogeography, 37, 18511862.
Kwarteng, A.Y., Dorvlo, A.S. & Kumar, G.T.V. (2009) Analysis of a 27-year rainfall data (1977–2003) in the Sultanate of Oman. International Journal of Climatology, 29, 605617.
Luedeling, E., Siebert, S. & Buerkert, A. (2007) Filling the voids in the SRTM elevation model: a TIN-based delta surface approach. Journal of Photogrammetry and Remote Sensing, 62, 283294.
MacKenzie, D.I. & Bailey, L.L. (2004) Assessing the fit of site-occupancy models. Journal of Agricultural, Biological, and Environmental Statistics, 9, 300318.
MacKenzie, D.I., Nichols, J.D., Royle, J.A., Pollock, K.H., Bailey, L.L. & Hines, J.E. (2006) Occupancy Estimation and Modeling: Inferring Patterns and Dynamics of Species Occurrence. Academic Press, New York, USA.
McCune, B. & Keon, D. (2002) Equations for potential annual direct incident radiation and heat load. Journal of Vegetation Science, 13, 603606.
Mishra, C., Van Wieren, S.E., Ketner, P., Heitkönig, I.M.A. & Prins, H.H.T. (2004) Competition between domestic livestock and wild bharal Pseudois nayaur in the Indian Trans-Himalaya. Journal of Applied Ecology, 41, 344354.
Monks, J. & Ross, S. (2015) Hajar Mountains Invertebrate Survey 2013–2014. Unpublished report, Oman Earthwatch Programme, Muscat, Oman.
Munton, P.N. (1985) The ecology of the Arabian tahr (Hemitragus jayakari Thomas 1894) and a strategy for the conservation of the species. Journal of Oman Studies, 8, 1148.
Patzelt, A. (2015) Synopsis of the flora and vegetation of Oman, with special emphasis on patterns of plant endemism. In Jahrbuch 2014 der Braunschweigischen Wissenschaftlichen Gesellschaft, pp. 282317.
Pearce, J. & Ferrier, S. (2000) Evaluating the predictive performance of habitat models developed using logistic regression. Ecological Modelling, 133, 225245.
Ripple, W.J. & Beschta, R.L. (2004) Wolves and the ecology of fear: can predation risk structure ecosystems? BioScience, 54, 755766.
Rodríguez, J.P., Brotons, L., Bustamante, J. & Seoane, J. (2007) The application of predictive modelling of species distribution to biodiversity conservation. Diversity and Distributions, 13, 243251.
Schrenk, M., Neuschmid, J., Rathschüler, O. & Kollarits, S. (2012) Development of a Planning Information System to Support Environmental Planning in the Sultanate of Oman in the Frame of the Oman National Spatial Strategy ONSS 48th ISOCARP Congress.
Thuiller, W., Richardson, D.M., Pyšek, P., Midgley, G.F., Hughes, G.O. & Rouget, M. (2005) Niche-based modelling as a tool for predicting the risk of alien plant invasions at a global scale. Global Change Biology, 11, 22342250.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

  • ISSN: 0030-6053
  • EISSN: 1365-3008
  • URL: /core/journals/oryx
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed