Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-23T10:32:14.674Z Has data issue: false hasContentIssue false

Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes

Published online by Cambridge University Press:  08 February 2016

Nicholas J. Butterfield*
Affiliation:
Department of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ, United Kingdom. E-mail: njb1005@esc.cam.ac.uk

Abstract

Multicellular filaments from the ca. 1200-Ma Hunting Formation (Somerset Island, arctic Canada) are identified as bangiacean red algae on the basis of diagnostic cell-division patterns. As the oldest taxonomically resolved eukaryote on record Bangiomorpha pubescens n. gen. n. sp. provides a key datum point for constraining protistan phylogeny. Combined with an increasingly resolved record of other Proterozoic eukaryotes, these fossils mark the onset of a major protistan radiation near the Mesoproterozoic/Neoproterozoic boundary.

Differential spore/gamete formation shows Bangiomorpha pubescens to have been sexually reproducing, the oldest reported occurrence in the fossil record. Sex was critical for the subsequent success of eukaryotes, not so much for the advantages of genetic recombination, but because it allowed for complex multicellularity. The selective advantages of complex multicellularity are considered sufficient for it to have arisen immediately following the appearance of sexual reproduction. As such, the most reliable proxy for the first appearance of sex will be the first stratigraphic occurrence of complex multicellularity.

Bangiomorpha pubescens is the first occurrence of complex multicellularity in the fossil record. A differentiated basal holdfast structure allowed for positive substrate attachment and thus the selective advantages of vertical orientation; i.e., an early example of ecological tiering. More generally, eukaryotic multicellularity is the innovation that established organismal morphology as a significant factor in the evolutionary process. As complex eukaryotes modified, and created entirely novel, environments, their inherent capacity for reciprocal morphological adaptation, gave rise to the “biological environment” of directional evolution and “progress.” The evolution of sex, as a proximal cause of complex multicellularity, may thus account for the Mesoproterozoic/Neoproterozoic radiation of eukaryotes.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Airoldi, L., and Virgilio, M. 1998. Responses of turf-forming algae to spatial variations in the deposition of sediments. Marine Ecology Progress Series 165:271282.CrossRefGoogle Scholar
Allison, C. W., and Hilgert, J. W. 1986. Scale microfossils from the Early Cambrian of northwest Canada. Journal of Paleontology 60:9731015.CrossRefGoogle Scholar
Anagnostidis, K., and Komárek, J. 1990. Modern approach to the classification system of Cyanophytes. Archiv für Hydrobiologie, Supplementband 86:173.Google Scholar
Bell, G. 1982. The masterpiece of nature: the evolution and genetics of sexuality. Croom Helm, London.Google Scholar
Bhattacharya, D., Elwood, H. J., Goff, L. J., and Sogin, M. L. 1990. Phylogeny of Gracilaria lemaneiformis (Rhodophyta) based on sequence analysis of its small subunit ribosomal RNA coding region. Journal of Phycology 26:181186.CrossRefGoogle Scholar
Bottjer, D. J., and Ausich, W. I. 1986. Phanerozoic development of tiering in soft substrata suspension-feeding communities. Paleobiology 12:400420.CrossRefGoogle Scholar
Brasier, M. D., and Lindsay, J. F. 1998. A billion years of environmental stability and the emergence of eukaryotes: new data from northern Australia. Geology 26:555558.2.3.CO;2>CrossRefGoogle ScholarPubMed
Brocks, J. J., Logan, G. A., Buick, R., and Summons, R. E. 1999. Archean molecular fossils and the early rise of eukaryotes. Science 285:10331036.CrossRefGoogle ScholarPubMed
Buss, L. W. 1987. The evolution of individuality. Princeton University Press, Princeton, N.J.Google Scholar
Butterfield, N. J.In press. Paleobiology of the late Mesoproterozoic (ca. 1200 Ma) Hunting Formation, Somerset Island, arctic Canada. Precambrian Research.Google Scholar
Butterfield, N. J., and Rainbird, R. H. 1998. Diverse organicwalled microfossils, including “possible dinoflagellates,” from the early Neoproterozoic of arctic Canada. Geology 26:963966.2.3.CO;2>CrossRefGoogle Scholar
Butterfield, N. J., Knoll, A. H., and Swett, K. 1990. A bangiophyte red alga from the Proterozoic of arctic Canada. Science 250:104107.CrossRefGoogle ScholarPubMed
Butterfield, N. J., Knoll, A. H., and Swett, K. 1994. Paleobiology of the Neoproterozoic Svanbergfjellet Formation, Spitsbergen. Fossils and Strata 34:184.CrossRefGoogle Scholar
Campbell, S. E. 1980. Palaeoconchocelis starmachii, a carbonate boring microfossil from the Upper Silurian of Poland (425 million years old): implications for the evolution of the Bangiaceae (Rhodophyta). Phycologia 19:2536.CrossRefGoogle Scholar
Carpenter, R. C., and Williams, S. L. 1993. Effects of algal turf canopy height and microscale substratum topography on profiles of flow speed in a coral forereef environment. Limnology and Oceanography 38:687694.CrossRefGoogle Scholar
Cole, K. M., and Conway, E. 1975. Phenetic implication of structural features of the perennating phase in the life history of Porphyra and Bangia (Bangiophyceae, Rhodophyta). Phycologia 14:239245.CrossRefGoogle Scholar
Cole, K. M., and Conway, E. 1980. Studies in the Bangiaceae: reproductive modes. Botanica Marina 23:545553.Google Scholar
Cole, K. M., and Sheath, R. G., eds. 1990. Biology of the red algae. Cambridge University Press, Cambridge.Google Scholar
Cole, K. M., Park, C. M., Reid, P. E., and Sheath, R. G. 1985. Comparative studies on the cell walls of sexual and asexual Bangia atropurpurea (Rhodophyta). I. Histochemistry of polysaccharides. Journal of Phycology 21:585592.CrossRefGoogle Scholar
Dacks, J., and Roger, A. J. 1999. The first sexual lineage and the relevance of facultative sex. Journal of Molecular Evolution. 48:779783.CrossRefGoogle ScholarPubMed
Delwiche, C. F., and Palmer, J. D. 1997. The origin of plastids and their spread via secondary symbiosis. Plant Systematics and Evolution 11(Suppl.):5386.CrossRefGoogle Scholar
Enzien, M. V. 1990. Cyanobacteria or Rhodophyta? Interpretation of a Precambrian microfossil. BioSystems 24:245251.CrossRefGoogle ScholarPubMed
Freshwater, D. W., Fredericq, S., Butler, B. S., Hommersand, M. H., and Chase, M. W. 1994. A gene phylogeny of the red algae (Rhodophyta) based on plastid rbcL. Proceedings of the National Academy of Sciences USA 91:72817285.CrossRefGoogle ScholarPubMed
Fritsch, F. E. 1935. The structure and reproduction of the algae, Vol. 1. Cambridge University Press, London.Google Scholar
Garbary, D. J., Hansen, G. I., and Scagel, R. F. 1980. The marine algae of British Columbia and northern Washington: Division Rhodophyta (Red Algae), Class Bangiophyceae. Syesis 13:137195.Google Scholar
Geesink, R. 1973. Experimental investigations on marine and freshwater Bangia (Rhodophyta) from the Netherlands. Journal of Experimental Marine Biology and Ecology 11:239247.CrossRefGoogle Scholar
Green, J. W., Knoll, A. H., Golubic, S., and Swett, K. 1987. Paleobiology of distinctive benthic microfossils from the Upper Proterozoic Limestone-Dolomite “Series,” central East Greenland. American Journal of Botany 74:928940.CrossRefGoogle ScholarPubMed
Grosberg, R. K., and Strathmann, R. R. 1998. One cell, two cell, red cell, blue cell: the persistence of a unicellular stage in multicellular life histories. Trends in Ecology and Evolution 13:112116.CrossRefGoogle ScholarPubMed
Grotzinger, J. P., and Knoll, A. H. 1999. Stromatolites in Precambrian carbonates: evolutionary mileposts or environmental dipsticks? Annual Review of Earth and Planetary Sciences 27:313358.CrossRefGoogle ScholarPubMed
Han, T.-M., and Runnegar, B. 1992. Megascopic eukaryotic algae from the 2.1-billion-year-old Negaunee iron-formation, Michigan. Science 257:232235.CrossRefGoogle ScholarPubMed
Hawkes, M. W. 1990. Reproductive strategies. Pp. 455476in Cole, and Sheath, 1990.Google Scholar
Hay, M. E. 1981. The functional morphology of turf-forming seaweeds: persistence in stressful marine habitats. Ecology 62:739750.CrossRefGoogle Scholar
Hendriks, L., De Baere, R., Van de Peer, Y., Neefs, J., Goris, A., and DeWachter, R. 1991. The evolutionary position of the rhodophyte Porphyra umbilicalis and the basidiomycete Leucosporidium scottii among other eukaryotes as deduced from complete sequences of small ribosomal subunit RNA. Journal of Molecular Evolution 32:167177.CrossRefGoogle ScholarPubMed
Hermann, T. N. 1981. Nitchatye mikroorganizmy Lakhandinskoi svity reki Mai. Paleontologicheskii Zhurnal 1981(2):126131. [Filamentous microorganisms in the Lakhanda Formation on the Maya River. Paleontological Journal 1982(2):100–107.]Google Scholar
Hirt, R. P., Logsdon, J. M. Jr., Healy, B., Dorey, M. W., Doolittle, W. F., and Embley, T. M. 1999. Microsporidia are related to Fungi: evidence from the largest subunit of RNA polymerase II and other proteins. Proceedings of the National Academy of Sciences USA 96:580585.CrossRefGoogle ScholarPubMed
Hofmann, H. J., and Jackson, G. D. 1991. Shelf-facies microfossils from the Uluksan Group (Proterozoic Bylot Supergroup), Baffin Island, Canada. Journal of Paleontology 65:361382.CrossRefGoogle Scholar
Hommersand, M. H., and Fredericq, S. 1990. Sexual reproduction and cystocarp development. Pp. 305345in Cole, and Sheath, 1990.Google Scholar
Hori, H., and Osawa, S. 1987. Origin and evolution of organisms as deduced from 5S ribosomal RNA sequences. Molecular Biology and Evolution 4:445472.Google ScholarPubMed
Horodyski, R. J. 1993. Paleontology of Proterozoic shales and mudstones: examples from the Belt Supergroup, Chuar Group and Pahrump Group, western USA. Precambrian Research 61:241278.CrossRefGoogle Scholar
Horodyski, R. J., and Mankiewicz, C. 1990. Possible Late Proterozoic skeletal algae from the Pahrump Group, Kingston Range, southeastern California. American Journal of Science 290-A:149169.Google Scholar
Horvitz, H. R., and Herskowitz, I. 1992. Mechanisms of asymmetric cell division: two Bs or not two Bs, that is the question. Cell 68:237255.CrossRefGoogle ScholarPubMed
Jones, C. G., Lawton, J. H., and Shachak, M. 1997. Positive and negative effects of organisms as physical ecosystem engineers. Ecology 78:19461957.CrossRefGoogle Scholar
Kah, L. C., and Knoll, A. H. 1996. Microbenthic distribution of Proterozoic tidal flats: environmental and taphonomic considerations. Geology 24:7982.2.3.CO;2>CrossRefGoogle ScholarPubMed
Kah, L. C., Sherman, A. G., Narbonne, G. M., Knoll, A. H., Kaufman, A. J. 1999. δ13C stratigraphy of the Proterozoic Bylot Supergroup, Baffin Island, Canada: implication for regional lithostratigraphic correlations. Canadian Journal of Earth Sciences 36:120.CrossRefGoogle Scholar
Kaufman, A. J., Knoll, A. H., and Awramik, S. M. 1992. Biostratigraphic and chemostratigraphic correlation of Neoproterozoic sedimentary successions: upper Tindir Group, northwestern Canada, as a test case. Geology 20:181185.2.3.CO;2>CrossRefGoogle ScholarPubMed
Kirk, D. L. 1998. Volvox, molecular-genetic origins of multicellularity and cellular differentiation. Cambridge University Press, Cambridge.Google Scholar
Knoll, A. H. 1992. The early evolution of eukaryotes: a geological perspective. Science 256:622627.CrossRefGoogle ScholarPubMed
Knoll, A. H. 1994. Proterozoic and Early Cambrian protists: evidence for accelerating evolutionary tempo. Proceedings of the National Academy of Sciences USA 91:67436750.CrossRefGoogle ScholarPubMed
Knoll, A. H., and Sergeev, V. N. 1995. Taphonomic and evolutionary changes across the Mesoproterozoic-Neoproterozoic transition. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 194:289302.CrossRefGoogle Scholar
Kondrashov, A. S. 1994. The asexual ploidy cycle and the origin of sex. Nature 370:213216.CrossRefGoogle ScholarPubMed
Kondrashov, A. S. 1997. Evolutionary genetics of life cycles. Annual Review of Ecology and Systematics 28:391435.CrossRefGoogle Scholar
Kumar, S. 1995. Megafossils from the Mesoproterozoic Rohtas Formation (the Vindhyan Supergroup), Katni area, central India. Precambrian Research 72:171184.CrossRefGoogle Scholar
Kumar, S., and Rzhetsky, A. 1996. Evolutionary relationships of eukaryotic kingdoms. Journal of Molecular Evolution 42:183193.CrossRefGoogle ScholarPubMed
Mable, B. K., and Otto, S. P. 1998. The evolution of life cycles with haploid and diploid phases. Bioessays 20:453462.3.0.CO;2-N>CrossRefGoogle Scholar
Maithy, P. K. 1975. Microorganisms from the Bushimay System (late Pre-cambrian) of Kanshi, Zaire. Palaeobotanist 22:133149.Google Scholar
Martin, T. C., and Wyatt, J. T. 1974. Comparative physiology and morphology of six strains of stigonematacean blue-green algae. Journal of Phycology 10:5765.Google Scholar
Martin, W., and Müller, M. 1998. The hydrogen hypothesis for the first eukaryote Nature 392:3741.CrossRefGoogle ScholarPubMed
Smith, J. Maynard, and Szathmáry, E. 1995. The major transitions in evolution. W. H. Freeman Spektrum, Oxford.Google Scholar
Melchior, H. 1954. Rhodophyta. Pp. 123138in Melchior, H. and Werdermann, E., eds. A. Engler's Syllabus der Pflanzenfamilien, 12th ed., Vol. 1. Borntraeger, Berlin.Google Scholar
Michod, R. E. 1997. Evolution of the individual. American Naturalist 150:S5S21.CrossRefGoogle ScholarPubMed
Moreira, D., Le, H. Guyader, and Philippe, H. 2000. The origin of red algae and the evolution of chloroplasts. Nature 405:6972.CrossRefGoogle ScholarPubMed
Muller, H. J. 1964. The relation of recombination to mutational advance. Mutation Research 1:29.CrossRefGoogle Scholar
Nägeli, C. 1847. Die neueren Algensysteme. F. Schulthess, Zürich.Google Scholar
Perasso, R., Baroin, A., Qu, L. H., Bachellerie, J. P., and Adoutte, A. 1989. Origin of the algae. Nature 339:142144.CrossRefGoogle ScholarPubMed
Philippe, H., and Adoutte, A. 1998. The molecular phylogeny of eukaryota: solid facts and uncertainties. Pp. 2556in Coombs, G. H., Vickerman, K., Sleigh, M. A., and Warren, A., eds. Evolutionary relationships among protozoa. Chapman and Hall, London.Google Scholar
Philippe, H., Lopez, P., Brinkmann, H., Budin, K., Germot, A., Laurent, J., Moreira, D., Müller, M., and Guyader, H. LeIn press. Early branching or fast evolving eukaryotes? An answer based on slowly evolving positions. Proceedings of the Royal Society of London B.Google Scholar
Porter, S. M., and Knoll, A. H. 2000. Testate amoebae in the Neoproterozoic Era: evidence from vase-shaped microfossils in the Chuar Group, Grand Canyon. Paleobiology 26:360385.2.0.CO;2>CrossRefGoogle Scholar
Pueschel, C. M. 1990. Cell structure. Pp. 741in Cole, and Sheath, 1990.Google Scholar
Ragan, M. A., and Gutell, R. R. 1995. Are red algae plants? Botanical Journal of the Linnean Society 118:81105.CrossRefGoogle Scholar
Ragan, M. A., Bird, C. J., Rice, E. L., Gutell, R. R., Murphy, C. A., and Singh, R. K. 1994. A molecular phylogeny of the marine red algae (Rhodophyta) based on the nuclear small-subunit rRNA gene. Proceedings of the National Academy of Sciences USA 91:72767280.CrossRefGoogle ScholarPubMed
Reith, M. 1995. Molecular biology of rhodophyte and chromophyte plastids. Annual Review of Plant Physiology and Plant Molecular Biology 46:549575.CrossRefGoogle Scholar
Runnegar, B. 1994. Proterozoic eukaryotes: evidence from biology and geology. Pp. 287297in Bengtson, S., ed. Early life on Earth. (Nobel Symposium No. 84.)Columbia University Press, New York.Google Scholar
Ruvinsky, A. 1997. Sex, meiosis and multicellularity. Acta Biotheoretica 45:127141.CrossRefGoogle ScholarPubMed
Scagel, R. F. 1966. Marine algae of British Columbia and northern Washington, Part 1. Chlorophyceae (green algae). National Museum of Canada Bulletin 207:1257.Google Scholar
Schmitz, F. 1892. Rhodophyceae. Pp. 1523in Engler, A., ed. Syllabus der Vorlesungen. G. Borntraeger, Berlin.Google Scholar
Schopf, J. W., Haugh, B. N., Molnar, R. E., and Satterthwait, D. F. 1973. On the development of metaphytes and metazoans. Journal of Paleontology 47:19.Google Scholar
Sepkoski, J. J. Jr. 1978. A kinetic model of Phanerozoic taxonomic diversity. I. Analysis of marine order. Paleobiology 4:223251.CrossRefGoogle Scholar
Sheath, R. G., and Cole, K. M. 1980. Distribution and salinity adaptations of Bangia atropurpurea (Rhodophyta), a putative migrant into the Laurentian Great Lakes. Journal of Phycology 16:412420.CrossRefGoogle Scholar
Sheath, R. G., and Cole, K. M. 1984. Systematics of Bangia (Rhodophyta) in North America. I. Biogeographic trends in morphology. Phycologia 23:383396.CrossRefGoogle Scholar
Sheath, R. G., Vanalstyne, K. L., and Cole, K. M. 1985. Distribution, seasonality and reproductive phenology of Bangia atropurpurea (Rhodophyta) in Rhode Island, U.S.A. Journal of Phycology 21:297303.CrossRefGoogle Scholar
Sommerfeld, M. R., and Nichols, H. W. 1970. Developmental and cytological studies of Bangia fuscopurpurea in culture. American Journal of Botany 57:640648.CrossRefGoogle Scholar
Sommerfeld, M. R., and Nichols, H. W. 1973. The life cycle of Bangia Fuscopurpurea in culture. I. Effects of temperature and photoperiod on the morphology and reproduction of the Bangia phase. Journal of Phycology 9:205210.CrossRefGoogle Scholar
Stanley, S. M. 1973. An ecological theory for the sudden origin of multicellular life in the late Precambrian. Proceedings of the National Academy of Sciences USA 70:14861489.CrossRefGoogle ScholarPubMed
Stanley, S. M. 1975. Clades versus clones in evolution: why we have sex. Science 190:382383.CrossRefGoogle ScholarPubMed
Stewart, W. D. 1987. Late Proterozoic to early Tertiary stratigraphy of Somerset Island and northern Boothia Peninsula, District of Franklin, N.W.T. Geological Survey of Canada Paper 83–26:178.CrossRefGoogle Scholar
Stiller, J. W., and Hall, B. D. 1997. The origin of red algae: implications for plastid evolution. Proceedings of the National Academy of Sciences USA 94:45204525.CrossRefGoogle ScholarPubMed
Stiller, J. W., and Hall, B. D. 1998. Sequences of the largest subunit of RNA polymerase II from two red algae and their implications for rhodophyte evolution. Journal of Phycology 34:858864.CrossRefGoogle Scholar
Stiller, J. W., and Hall, B. D. 1999. Long-branch attraction and the rDNA model of early eukaryotic evolution. Mollecular Biology and Evolution 16:12701279.CrossRefGoogle ScholarPubMed
Summons, R. E., Jahnke, L. L., Hope, J. M., and Logan, G. A. 1999. 2-methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis. Nature 400:554557.CrossRefGoogle ScholarPubMed
Walter, M. R., Rulin, Du, and Horodyski, R. J. 1990. Coiled carbonaceous megafossils from the middle Proterozoic of Jixian (Tianjin) and Montana. American Journal of Science 290-A:133148.Google Scholar
Wettstein, R. 1924. Handbuch der Systematischen Botanik, Band 1. Franz Deuticke, Leipzig.Google Scholar
Woelkerling, W. J. 1990. An introduction. Pp. 16in Cole, and Sheath, 1990.Google Scholar
Woese, C., Kandler, O., and Wheelis, M. L. 1990. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proceedings of the National Academy of Sciences USA 87:45764579.CrossRefGoogle ScholarPubMed
Woods, K. N., Knoll, A. H., and German, T. 1998. Xanthophyte algae from the Mesoproterozoic/Neoproterozoic transition: confirmation and evolutionary implications. Geological Society of America Abstracts with Programs 30:232.Google Scholar
Xiao, S., Knoll, A. H., Kaufman, A. J., Yin, L., and Zhang, Y. 1997. Neoproterozoic fossils in Mesoproterozoic rocks? Chemostratigraphic resolution of a biostratigraphic conundrum from the North China Platform. Precambrian Research 84:197220.CrossRefGoogle Scholar
Yan, Y. 1989. Shale facies algal filaments from Chuanlinggou Formation in Jixian County. Bulletin Tianjin Institute, Geology and Mineral Resources 21:149165.Google Scholar
Yan, Y. 1995. Discovery and preliminary study of megascopic algae (1700 Ma) from the Tuanshanzi Formation in Jixian, China. Acta Micropalaeontologica Sinica 12:107126.Google Scholar
Yan, Y., and Liu, Z. 1997. Tuanshanzian macroscopic algae of 1700 Ma b.p from Changcheng System of Jixian, China. Acta Palaeontologica Sinica 36:1841.Google Scholar
Zhang, Y., and Yuan, X. 1996. Sexual reproductive structures of Latest Proterozoic multicellular rhodophytes (red algae) from South China. Science in China, Series C, Life Sciences 39:2836.Google Scholar
Zhang, Y., Yin, L., Xiao, S., and Knoll, A. H. 1998. Permineralized fossils from the terminal Proterozoic Doushantuo Formation, South China. Paleontological Society Memoir (Journal of Paleontology 72[Suppl. to No. 4]) 50:152.Google Scholar
Zhang, Z. 1997. A new Palaeoproterozoic clastic-facies microbiota from the Changzhougou Formation, Changcheng Group, Jixian, north China. Geological Magazine 134:145150.Google Scholar
Zhu, S., and Chen, H. 1995. Megascopic multicellular organisms from the 1700-million-year-old Tuanshanzi Formation in the Jixian area, North China. Science 270:620622.Google Scholar