Skip to main content Accessibility help
×
Home
Hostname: page-component-768ffcd9cc-8zwnf Total loading time: 0.578 Render date: 2022-12-03T02:55:22.736Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Article contents

Can latitudinal richness gradients be measured in the terrestrial fossil record?

Published online by Cambridge University Press:  09 March 2017

Danielle Fraser*
Affiliation:
Department of Paleobiology, Smithsonian Institution, National Museum of Natural History, 10th and Constitution NW, Washington, D.C. 20013-7012, U.S.A., and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6; E-mail: DFraser@mus-nature.ca. Present address: Palaeobiology, Canadian Museum of Nature, P.O. Box 3443 Station “D,” Ottawa, Ontario, CanadaK1P 6P4

Abstract

Studying the deep-time origins of macroecological phenomena can help us to understand their long-term drivers. Given the considerable spatiotemporal bias of the terrestrial fossil record, it behooves us to understand how much biological information is lost. The aim of this study is to establish whether latitudinal diversity gradients are detectable in a biased terrestrial fossil record. I develop a simulated fossilization approach, weighting the probability of terrestrial mammal species appearing in the fossil record based on body size and geographic-range size; larger species with larger range sizes are more likely to enter the fossil record. I create simulated fossil localities from the modern North American mammal record. I vary the percentage of species successfully fossilized and estimate the magnitude of the latitudinal diversity gradient (slope of the richness gradient and degree of species turnover). I find that estimates of the latitudinal diversity gradient are sensitive to the loss of species with small body size and geographic-range sizes. In some cases, simulated fossil-record bias completely obliterates evidence of declining richness with latitude, a phenomenon that is not ameliorated by the application of nonparametric richness estimation. However, if the rate of preservation is medium (50% of species) to high (75% of species), the magnitude of the latitudinal diversity gradient can be reliably estimated. Similarly, changes in the diversity gradient estimates are largely explained by differences in the diversity–climate relationship among iterations, suggesting that these relationships may be measurable in the fossil record.

Type
Methods in Paleobiology
Copyright
Copyright © 2017 The Paleontological Society. All rights reserved 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alroy, J. 1996. Constant extinction, constrained diversification, and uncoordinated stasis in North American mammals. Palaeogeography, Palaeoclimatology, Palaeoecology 127:285311.CrossRefGoogle Scholar
Alroy, J. 2010a. Fair sampling of taxonomic richness and unbiased estimation of origination and extinction rates. In J. Alroy and G. Hunt, eds. Quantitative methods in paleobiology. Paleontological Society Papers 16:55–80.Google Scholar
Alroy, J. 2010b. The shifting balance of diversity among major marine animal groups. Science 329:11911194.CrossRefGoogle ScholarPubMed
Alroy, J., Koch, P. L., and Zachos, J. C.. 2000. Global climate change and North American mammalian evolution. Paleobiology 26:259288.CrossRefGoogle Scholar
Alroy, J., Marshall, C. R., Bambach, R. K., Bezusko, K., Foote, M., Fürsich, F. T., Hansen, T. A., Holland, S. M., Ivany, L. C., Jablonski, D., Jacobs, D. K., Jones, D. C., Kosnik, M. A., Lidgard, S., Low, S., Miller, A. I., Novack-Gottshall, P. M., Olszewski, T. D., Patzkowsky, M. E., Raup, D. M., Roy, K., Sepkoski, J. J., Sommers, M. G., Wagner, P. J., and Webber, A.. 2001. Effects of sampling standardization on estimates of Phanerozoic marine diversification. Proceedings of the National Academy of Sciences USA 98:6261–6266.Google Scholar
Badgley, C. 2010. Tectonics, topography, and mammalian diversity. Ecography 33:220231.Google Scholar
Badgley, C., and Fox, D. L.. 2000. Ecological biogeography of North American mammals: species density and ecological structure in relation to environmental gradients. Journal of Biogeography 27:14371467.CrossRefGoogle Scholar
Barnosky, A. D., Carrasco, M. A., and Davis, E. B.. 2005. The impact of the species–area relationship on estimates of paleodiversity. PLoS Biol 3:13561361.CrossRefGoogle Scholar
Bartoń, K. 2013. Model selection and model averaging based on information criteria (AICc and alike). http://cran.r-project.org/web/packages/MuMIn/index.html.Google Scholar
Baselga, A., Lobo, J. M., Svenning, J.-C., Aragón, P., and Araújo, M. B.. 2012. Dispersal ability modulates the strength of the latitudinal richness gradient in European beetles. Global Ecology and Biogeography 21:11061113.CrossRefGoogle Scholar
Behrensmeyer, A. K., and Dechant Boaz, D. E.. 1980. The Recent bones of Amboseli Park, Kenya, in relation to East African paleoecology. Pp. 7292. in A. K. Behrensmeyer, ed. Fossils in the making. University of Chicago Press, Chicago.Google Scholar
Behrensmeyer, A. K., Kidwell, S. M., and Gastaldo, R. A.. 2000. Taphonomy and paleobiology. Paleobiology 26:103147.CrossRefGoogle Scholar
Behrensmeyer, A. K., Western, D., and Boaz, D. E. D.. 1979. New perspectives in vertebrate paleoecology from a recent bone assemblage. Paleobiology 5:1221.CrossRefGoogle Scholar
Benson, R. B. J., and Mannion, P. D.. 2012. Multi-variate models are essential for understanding vertebrate diversification in deep time. Biology Letters 8:127130.CrossRefGoogle ScholarPubMed
Benton, M. J., Dunhill, A. M., Lloyd, G. T., and Marx, F. G.. 2011. Assessing the quality of the fossil record: insights from vertebrates. Pp. 6394. in A. J. McGowan, and A. B. Smith, eds. Comparing the geological and fossil records: implications for biodiversity studies. Geological Society of London, London.Google Scholar
Blackburn, T. M., Gaston, K. J., and Loder, N.. 1999. Geographic gradients in body size: a clarification of Bergmann’s rule. Diversity and Distributions 5:165174.CrossRefGoogle Scholar
Bowman, D. M. J. S. 1996. Diversity patterns of woody species on a latitudinal transect from the monsoon tropics to desert in the Northern Territory, Australia. Australian Journal of Botany 44:571580.CrossRefGoogle Scholar
Brown, J. H. 1995. Macroecology. University of Chicago Press, Chicago.Google Scholar
Burnham, K. P., and Anderson, D. R.. 2002. Model selection and multimodel inference: a practical information-theoretic approach, 2nd ed. Springer, New York, New York.Google Scholar
Carotenuto, F., Diniz-Filho, J. A. F., and Raia, P.. 2015. Space and time: the two dimensions of Artiodactyla body mass evolution. Palaeogeography, Palaeoclimatology, Palaeoecology 437:1825.CrossRefGoogle Scholar
Carrasco, M. A., Kraatz, B. P., Davis, E. B., and Barnosky, A. D.. 2005. Miocene mammal mapping project (MIOMAP). University of California Museum of Paleontology, Berkeley. http://www.ucmp.berkeley.edu/miomap.Google Scholar
Colwell, R. K., and Coddington, J. A.. 1994. Estimating terrestrial biodiversity through extrapolation. Philosophical Transactions of the Royal Society of London B 345:101118.CrossRefGoogle ScholarPubMed
Condamine, F. L., Sperling, F. A. H., Wahlberg, N., Rasplus, J.-Y., and Kergoat, G. J.. 2012. What causes latitudinal gradients in species diversity? Evolutionary processes and ecological constraints on swallowtail biodiversity. Ecology Letters 15:267277.CrossRefGoogle Scholar
Condit, R., Pitman, N., Chave, E. G. L., Jr., J., Terborgh, J., Foster, R. B., Aguilar, P. N. V., S., Valencia, R., Villa, G., Muller-Landau, H. C., Losos, E., and Hubbell, S. P.. 2002. Beta-diversity in tropical forest trees. Science 295:666669.Google Scholar
Cooper, R. A., Maxwell, P. A., Crampton, J. S., Beu, A. G., Jones, C. M., and Marshall, B. A.. 2006. Completeness of the fossil record: estimating losses due to small body size. Geology 34:241244.CrossRefGoogle Scholar
Crampton, J. S., Beu, A. G., Cooper, R. A., Jones, C. M., Marshall, B., and Maxwell, P. A.. 2003. Estimating the Rock Volume Bias in Paleobiodiversity Studies. Science 301:358360.CrossRefGoogle Scholar
Currie, D. J. 1991. Energy and large-scale patterns of animal- and plant-species richness. American Naturalist 137:2749.CrossRefGoogle Scholar
Currie, D. J., and Fritz, J. T.. 1993. Global patterns of animal abundance and species energy use. Oikos 67:5668.CrossRefGoogle Scholar
Currie, D. J., Francis, A. P., and Kerr, J. T.. 1999. Some general propositions about the study of spatial patterns of species richness. Ecoscience 6:392399.CrossRefGoogle Scholar
Davis, E. B. 2005. Mammalian beta diversity in the Great Basin, western USA: palaeontological data suggest deep origin of modern macroecological structure. Global Ecology and Biogeography 14:479490.CrossRefGoogle Scholar
Diniz-Filho, J. A. F., Bini, L. M., and Hawkins, B. A.. 2003. Spatial autocorrelation and red herrings in geographical ecology. Global Ecology and Biogeography 12:5364.CrossRefGoogle Scholar
Donovan, S. K., and Paul, C. R. C.. 1998. The adequacy of the fossil record. Wiley, New York.Google Scholar
Dormann, C. F., McPherson, J. M., Araújo, M. B., Bivand, R., Bolliger, J., Carl, G., Davies, R. G., Hirzel, A., Jetz, W., Daniel Kissling, W., Kühn, I., Ohlemüller, R., Peres-Neto, P. R., Reineking, B., Schröder, B., Schurr, F. M., and Wilson, R.. 2007. Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30:609628.CrossRefGoogle Scholar
Dornelas, M., Gotelli, N. J., McGill, B., Shimadzu, H., Moyes, F., Sievers, C., and Magurran, A. E.. 2014. Assemblage time series reveal biodiversity change but not systematic loss. Science 344:296299.CrossRefGoogle Scholar
Ejrnæs, R. 2000. Can we trust gradients extracted by detrended correspondence analysis? Journal of Vegetation Science 11:565572.CrossRefGoogle Scholar
Engle, V. D., and Summers, J. K.. 1999. Latitudinal gradients in benthic community composition in Western Atlantic estuaries. Journal of Biogeography 26:10071023.CrossRefGoogle Scholar
Figueirido, B., Janis, C. M., Pérez-Claros, J. A., Renzi, M. D., and Palmqvist, P.. 2012. Cenozoic climate change influences mammalian evolutionary dynamics. Proceedings of the National Academy of Sciences USA 109: 722–727.Google Scholar
Fraser, D., Gorelick, R., and Rybczynski, N.. 2015. Macroevolution and climate change influence phylogenetic community assembly of North American hoofed mammals. Biological Journal of the Linnean Society 114:485494.CrossRefGoogle Scholar
Fraser, D., Hassall, C., Gorelick, R., and Rybczynski, N.. 2014. Mean annual precipitation explains spatiotemporal patterns of Cenozoic mammal beta diversity and latitudinal diversity gradients in North America. PloS ONE 9:e106499.CrossRefGoogle Scholar
Freckleton, R. P., Harvey, P. H., and Pagel, M.. 2003. Bergmann’s rule and body size in mammals. American Naturalist 161:821825.CrossRefGoogle ScholarPubMed
Girvetz, E. H., Zganjar, C., Raber, G. T., Maurer, E. P., Kareiva, P., and Lawler, J. J.. 2009. Applied climate-change analysis: the climate wizard tool. PLoS ONE 4:e8320.CrossRefGoogle Scholar
Hammer, Ø., and Harper, D. A. T.. 2006. Paleontological data analysis. Blackwell, Malden, Mass.Google Scholar
Hawkins, B. A., Field, R., Cornell, H. V., Currie, D. J., Guegan, J.-F., Kaufman, D. M., Kerr, J. T., Mittelbach, G. G., Oberdorff, T., O’Brien, E. M., Porter, E. E., and Turner, J. R. G.. 2003. Energy, water, and broad-scale geographic patterns of species richness. Ecology 84:31053117.CrossRefGoogle Scholar
Jablonski, D., Belanger, C. L., Berke, S. K., Huang, S., Krug, A. Z., Roy, K., Tomašových, A., and Valentine, J. W.. 2013. Out of the tropics, but how? Fossils, bridge species, and thermal ranges in the dynamics of the marine latitudinal diversity gradient. Proceedings of the National Academy of Sciences USA 110:10487–10494.Google Scholar
Jablonski, D., Roy, K., and Valentine, J. W.. 2006. Out of the tropics: evolutionary dynamics of the latitudinal diversity gradient. Science 314:102106.CrossRefGoogle ScholarPubMed
Jones, K. E., Bielby, J., Cardillo, M., Fritz, S. A., O’Dell, J., Orme, C. D. L., Safi, K., Sechrest, W., Boakes, E. H., Carbone, C., Connolly, C., Cutts, M. J., Foster, J. K., Grenyer, R., Habib, M., Plaster, C. A., Price, S. A., Rigby, E. A., Rist, J., Teacher, A., Bininda-Emonds, O. R. P., Gittleman, J. L., Mace, G. M., and Purvis, A.. 2009. PanTHERIA: a species-level database of life history, ecology, and geography of extant and recently extinct mammals. Ecology 90:2648.CrossRefGoogle Scholar
Kaufman, D. M. 1995. Diversity of New World mammals: universality of the latitudinal gradients of species and bauplans. Journal of Mammalogy 76:322334.CrossRefGoogle Scholar
Kent, R., Bar-Massada, A., and Carmel, Y.. 2011. Multiscale analyses of mammal species composition-environment relationship in the contiguous USA. PLoS ONE 6:e25440.Google Scholar
Kidwell, S. M., and Flessa, K. W.. 1996. The quality of the fossil record: populations, species, and communities. Annual Review in Earth and Planetary Science 24:433464.CrossRefGoogle Scholar
Kidwell, S. M., and Holland, S. M.. 2002. The quality of the fossil record: implications for evolutionary analyses. Annual Review of Ecology and Systematics 33:561588.CrossRefGoogle Scholar
Koleff, P., Lennon, J. J., and Gaston, K. J.. 2003. Are there latitudinal gradients in species turnover? Global Ecology and Biogeography 12:483498.CrossRefGoogle Scholar
Kraft, N. J. B., Cornwell, W. K., Webb, C. O., and Ackerly, D. D.. 2007. Trait evolution, community assembly, and phylogenetic structure of ecological communities. American Naturalist 170:271283.CrossRefGoogle ScholarPubMed
Mannion, P. D., Upchurch, P., Benson, R. B. J., and Goswami, A.. 2014. The latitudinal biodiversity gradient through deep time. Trends in Ecology and Evolution 29:4250.CrossRefGoogle ScholarPubMed
Mannion, P. D., Upchurch, P., Carrano, M. T., and Barrett, P. M.. 2011. Testing the effect of the rock record on diversity: a multidisciplinary approach to elucidating the generic richness of sauropodomorph dinosaurs through time. Biological Reviews 86:157181.CrossRefGoogle ScholarPubMed
Marcot, J. D., Fox, D. L., and Niebuhr, S. R.. 2016. Late Cenozoic onset of the latitudinal diversity gradient of North American mammals. Proceedings of the National Academy of Sciences USA 113:7189–7194.Google Scholar
McCoy, E. D., and Connor, E. F.. 1980. Latitudinal gradients in the species diversity of North American mammals. Evolution 34:193203.CrossRefGoogle ScholarPubMed
McNab, B. K. 1979. The influence of body size on the energetics and distribution of fossorial and burrowing mammals. Ecology 60:10101021.CrossRefGoogle Scholar
Miller, A. I., and Foote, M.. 1996. Calibrating the Ordovician radiation of marine life: implications for Phanerozoic diversity trends. Paleobiology 22:304309.CrossRefGoogle ScholarPubMed
Miller, J. H., Behrensmeyer, A. K., Du, A., Lyons, S. K., Patterson, D., Tóth, A., Villaseñor, A., Kanga, E., and Reed, D.. 2014. Ecological fidelity of functional traits based on species presence-absence in a modern mammalian bone assemblage (Amboseli, Kenya). Paleobiology 40:560583.CrossRefGoogle Scholar
Mitchell, T. D., and Jones, P. D.. 2005. An improved method of constructing a database of monthly climate observations and associated high-resolution grids. International Journal of Climatology 25:693712.CrossRefGoogle Scholar
Newell, N. D. 1959. Adequacy of the fossil record. Journal of Paleontology 33:488499.Google Scholar
Oksanen, J., Blanchet, F. G., Roeland Kindt, P. L., Minchin, P. R., O’Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., and Wagner, H.. 2012. Vegan package, Version 2.0-7. https://cran.r-project.org/web/packages/vegan/index.html.Google Scholar
Patterson, B. D., Ceballos, G., Sechrest, W., Tognelli, M. F., Brooks, T., Luna, L., Ortega, P., Salazar, I., and Young, B. E.. 2007. Digital distribution maps of the mammals of the Western Hemisphere, version 3.0. NatureServe, Arlington, VA.Google Scholar
Peres-Neto, P. R., Leibold, M. A., and Dray, S.. 2012. Assessing the effects of spatial contingency and environmental filtering on metacommunity phylogenetics. Ecology 93:S14S30.CrossRefGoogle Scholar
Peters, R. H. 1983. The ecological implications of body size. Cambridge University Press, New York.CrossRefGoogle Scholar
Qian, H., and Ricklefs, R. E.. 2007. A latitudinal gradient in large-scale beta diversity for vascular plants in North America. Ecology Letters 10:737744.CrossRefGoogle Scholar
Qian, H. 2012. Disentangling the effects of geographic distance and environmental dissimilarity on global patterns of species turnover. Global Ecology and Biogeography 21:341351.CrossRefGoogle Scholar
Qian, H., Badgley, C., and Fox, D. L.. 2009. The latitudinal gradient of beta diversity in relation to climate and topography for mammals in North America. Global Ecology and Biogeography 18:111–122.Raup. D. M. 1972. Taxonomic diversity across the Phanerozoic. Science 177:10651071.Google Scholar
Raia, P., Carotenuto, F., Passaro, F., Piras, P., Fulgione, D., Werdelin, L., Saarinen, J., and Fortelius, M.. 2012a). Rapid action in the Palaeogene, the relationship between phenotypic and taxonomic diversification in Coenozoic mammals. Proceedings of the Royal Society, Series B 280: 20122244.Google Scholar
Raia, P., Passaro, F., Fulgione, D., and Carotenuto, F.. 2012b. Habitat tracking, stasis and survival in Neogene large mammals. Biology Letters 8:6466.CrossRefGoogle ScholarPubMed
R Development Core Team 2016. R: A language and environment for statistical computing. Vienna, Austria: Foundation for Statistical Computing.Google Scholar
Raup, D. M. 1975. Diversity estimation using rarefaction. Paleobiology 4:333342.CrossRefGoogle Scholar
Raup, D. M. 1976. Species diversity in the Phanerozoic: an interpretation. Paleobiology 2:289297.CrossRefGoogle Scholar
Raup, D. M. 1979. Biases in the fossil record of species and genera. Bulletin of the Carnegie Museum of Natural History 13:8591.Google Scholar
Rose, P. J., Fox, D. L., Marcot, J., and Badgley, C.. 2011. Flat latitudinal gradient in Paleocene mammal richness suggests decoupling of climate and biodiversity. Geology 39:163166.CrossRefGoogle Scholar
Rosenzweig, M. L. 1995. Species diversity in space and time. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Roy, K., Jablonski, D., Valentine, J. W., and Rosenberg, G.. 1998. Marine latitudinal diversity gradients: tests of causal hypotheses. Proceedings of the National Academy of Sciences USA 95:3699–3702.Google Scholar
Smith, A. B. 2001. Large-scale heterogeneity of the fossil record: implications for Phanerozoic biodiversity studies. Philosophical Transactions of the Royal Society of London B 356:351367.CrossRefGoogle ScholarPubMed
Soininen, J. 2010. Species turnover along abiotic and biotic gradients: patterns in space equal patterns in time? BioScience 60:433439.CrossRefGoogle Scholar
Soininen, J., McDonald, R., and Hillebrand, H.. 2007. The distance decay of similarity in ecological communities. Ecography 30:312.CrossRefGoogle Scholar
Stevens, G. C. 1989. The latitudinal gradient in geographical range: how so many species coexist in the tropics. American Naturalist 133:240256.CrossRefGoogle Scholar
Tomašových, A., and Kidwell, S. M.. 2009. Preservation of spatial and environmental gradients by death assemblages. Paleobiology 35:119145.CrossRefGoogle Scholar
——Tomašových, A., and Kidwell, S. M. 2010. Predicting the effects of increasing temporal scale on species composition, diversity, and rank-abundance distributions. Paleobiology 36:672695.CrossRefGoogle Scholar
Tuomisto, H., and Ruokolainen, K.. 2006. Analyzing and explaining beta diversity: understanding the targets of different methods of analysis. Ecology 87:26972708.CrossRefGoogle Scholar
Valentine, J. W., Jablonski, D., Krug, A. Z., and Berke, S. K.. 2013. The sampling and estimation of marine paleodiversity patterns: implications of a Pliocene model. Paleobiology 39:120.CrossRefGoogle Scholar
Vavrek, M. J. 2012. Fossil: palaeoecological and palaeogeographical analysis tools. https://cran.rstudio.com/web/packages/fossil/index.html.Google Scholar
Veter, N. M., DeSantis, L. R. G., Yann, L. T., Donohue, S. L., Haupt, R. J., Corapi, S. E., Fathel, S. L., Gootee, E. K., Loffredo, L. F., Romer, J. L., and Velkovsky, S. M.. 2013. Is Rapoport’s rule a recent phenomenon? A deep time perspective on potential causal mechanisms. Biology Letters 9:20130398.CrossRefGoogle Scholar
Whittaker, R. J., Willis, K. J., and Field, R.. 2001. Scale and species richness: towards a general, hierarchical theory of species diversity. Journal of Biogeography 28:453470.CrossRefGoogle Scholar
Wilman, H., Belmaker, J., Simpson, J., de la Rosa, C., Rivadeneira, M. M., and Jetz, W.. 2014. EltonTraits 1.0: Species-level foraging attributes of the world’s birds and mammals. Ecology 95:2027.CrossRefGoogle Scholar
12
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Can latitudinal richness gradients be measured in the terrestrial fossil record?
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Can latitudinal richness gradients be measured in the terrestrial fossil record?
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Can latitudinal richness gradients be measured in the terrestrial fossil record?
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *