Skip to main content Accessibility help
×
Home
Hostname: page-component-7ccbd9845f-wr4x4 Total loading time: 0.856 Render date: 2023-01-29T10:11:13.887Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Article contents

A case study of extant and extinct Xenarthra cranium covariance structure: implications and applications to paleontology

Published online by Cambridge University Press:  13 May 2016

Alex Hubbe
Affiliation:
Departamento de Oceanografia, Instituto de Geociências, Universidade Federal da Bahia, Salvador, BA, 40170-020, Brazil. E-mail: alexhubbe@yahoo.com
Diogo Melo
Affiliation:
Laboratório de Evolução de Mamíferos, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, São Paulo, SP, 05508-090, Brazil. E-mail: diogro@usp.br, gmarroig@usp.br
Gabriel Marroig
Affiliation:
Laboratório de Evolução de Mamíferos, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, São Paulo, SP, 05508-090, Brazil. E-mail: diogro@usp.br, gmarroig@usp.br

Abstract

Most of the mammalian diversity is known only from fossils, and only a few of these fossils are well preserved or abundant. This undersampling poses serious problems for understanding mammalian phenotypic evolution under a quantitative genetics framework, since this framework requires estimation of a group’s additive genetic variance–covariance matrix (G matrix), which is impossible, and estimating a phenotypic variance–covariance matrix (P matrix) requires larger sample sizes than what is often available for extinct species. One alternative is to use G or P matrices from extant taxa as surrogates for the extinct ones. Although there are reasons to believe this approach is usually safe, it has not been fully explored. By thoroughly determining the extant and some extinct Xenarthra (Mammalia) cranium P matrices, this study aims to explore the feasibility of using extant G or P matrices as surrogates for the extinct ones and to provide guidelines regarding the reliability of this strategy and the necessary sample sizes. Variance–covariance and correlation P matrices for 35 cranium traits from 16 xenarthran genera (12 extant and 4 extinct) were estimated and compared between genera. Results show xenarthran P-matrix structures are usually very similar if sample sizes are reasonable. This study and others developed with extant therian mammals suggest, in general, that using extant G or P matrices as an approximation to extinct ones is a valid approach. Nevertheless, the accuracy of this approach depends on sample size, selected traits, and the type of matrix being considered.

Type
Articles
Copyright
Copyright © 2016 The Paleontological Society. All rights reserved 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Ackermann, R. R. 2002. Patterns of covariation in the hominoid craniofacial skeleton: implications for paleoanthropological models. Journal of Human Evolution 43:167187.CrossRefGoogle ScholarPubMed
Ackermann, R. R. 2003. Using extant morphological variation to understand fossil relationships: a cautionary tale. South African Journal of Science 99:255258.Google Scholar
Ackermann, R. R. 2005. Variation in Neandertals: a response to Harvati (2003). Journal of Human Evolution 48:643646.CrossRefGoogle Scholar
Ackermann, R. R., and Cheverud, J. M.. 2004. Detecting genetic drift versus selection in human evolution. Proceedings of the National Academy of Sciences USA 101:1794617951.CrossRefGoogle ScholarPubMed
Aguirre, J. D., Hine, E., McGuigan, K., and Blows, M. W.. 2014. Comparing G: multivariate analysis of genetic variation in multiple populations. Heredity 112:2129.CrossRefGoogle Scholar
Akesson, M., Bensch, S., and Hasselquist, D.. 2007. Genetic and phenotypic associations in morphological traits: a long term study of great reed warblers Acrocephalus arundinaceus. Journal of Avian Biology 38:5872.CrossRefGoogle Scholar
Anderson, R. P., and Handley, C. O.. 2001. A new species of three-toed sloth (Mammalia: Xenarthra) from Panama, with a review of the genus Bradypus. Proceedings of the Biological Society of Washington 114:133.Google Scholar
Armbruster, W. S., Pélabon, C., Bolstad, G. H., and Hansen, T. F.. 2014. Integrated phenotypes: understanding trait covariation in plants and animals. Philosophical Transactions of the Royal Society B 369:20130245.CrossRefGoogle ScholarPubMed
Arnold, S. J. 1981. Behavioral variation in natural populations. I. Phenotypic, genetic and environmental correlations between chemoreceptive responses to prey in the garter snake. Evolution 35:489509.CrossRefGoogle ScholarPubMed
Arnold, S. J. 1992. Constraints on phenotypic evolution. American Naturalist 140:S85S107.CrossRefGoogle ScholarPubMed
Arnold, S., and Phillips, P.. 1999. Hierarchical comparison of genetic variance-covariance matrices. II. Coastal-inland divergence in the garter snake, Thamnophis elegans. Evolution 53:15161527.Google ScholarPubMed
Arnold, S. J., Buerger, R., Hohenlohe, P. A., Ajie, B. C., and Jones, A. G.. 2008. Understanding the evolution and stability of the G-matrix. Evolution 62:24512461.CrossRefGoogle ScholarPubMed
Barton, N. H., and Turelli, M.. 1989. Evolutionary quantitative genetics: how little do we know? Annual Review of Genetics 23:337370.CrossRefGoogle ScholarPubMed
Bégin, M., and Roff, D. A.. 2003. The constancy of the G matrix through species divergence and the effects of quantitative genetic constraints on phenotypic evolution: a case study in crickets. Evolution 57:11071120.CrossRefGoogle Scholar
Benton, M. J., and Harper, D. A. T.. 2009. Introduction to paleobiology and the fossil record. Wiley-Blackwell, Chichester, U.K.Google Scholar
Bergqvist, L. P., Abrantes, E. A. L., and Avilla, L. S.. 2004. The Xenarthra (Mammalia) of São José de Itaboraí Basin (upper Paleocene, Itaboraian), Rio de Janeiro, Brazil. Geodiversitas 26:323337.Google Scholar
Berner, D., Kaeuffer, R., Grandchamp, A. C., Raeymaekers, J. A. M., Räsänen, K., and Hendry, A. P.. 2011. Quantitative genetic inheritance of morphological divergence in a lake-stream stickleback ecotype pair: implications for reproductive isolation. Journal of Evolutionary Biology 24:19751983.CrossRefGoogle Scholar
Bininda-Emonds, O. R. P., Cardillo, M., Jones, K. E., MacPhee, R. D. E., Beck, R. M. D., Grenyer, R., Price, S. A., Vos, R. A., Gittleman, J. L., and Purvis, A.. 2007. The delayed rise of present-day mammals. Nature 446:507512.CrossRefGoogle ScholarPubMed
Blows, M. W., Chenoweth, S. F., and Hine, E.. 2004. Orientation of the genetic variance-covariance matrix and the fitness surface for multiple male sexually selected traits. American Naturalist 163:329340.CrossRefGoogle ScholarPubMed
Cardini, A., and Polly, P. D.. 2013. Larger mammals have longer faces because of size-related constraints on skull form. Nature Communications 4:2458.CrossRefGoogle ScholarPubMed
Cartelle, C., De Iuliis, G., and Pujos, F.. 2008. A new species of Megalonychidae (Mammalia, Xenarthra) from the Quaternary of Poço Azul (Bahia, Brazil). Comptes Rendus Palevol 7:335346.CrossRefGoogle Scholar
Chernick, M.R. 2008. Bootstrap methods: a guide for practitioners and researchers. Wiley, Hoboken, N.J.Google Scholar
Chernick, M. R., and LaBudde, L. A.. 2010. Revisiting qualms about bootstrap confidence intervals. American Journal of Mathematical and Management Sciences 29:437456.CrossRefGoogle Scholar
Cheverud, J. M. 1982. Phenotypic, genetic, and environmental morphological integration in the cranium. Evolution 36:499516.CrossRefGoogle ScholarPubMed
Cheverud, J. M. 1984. Quantitative genetics and developmental constraints on evolution by selection. Journal of Theoretical Biology 110:155171.CrossRefGoogle ScholarPubMed
Cheverud, J. M. 1988. A comparison of genetic and phenotypic correlations. Evolution 42:958968.CrossRefGoogle ScholarPubMed
Cheverud, J. M. 1995. Morphological integration in the saddle-back tamarin (Saguinus fuscicollis) cranium. American Naturalist 145:6389.CrossRefGoogle Scholar
Cheverud, J. M. 1996. Quantitative genetic analysis of cranial morphology in the cotton-top (Saguinus oedipus) and saddle-back (S. fuscicollis) tamarins. Journal of Evolutionary Biology 9:542.CrossRefGoogle Scholar
Cheverud, J. M., Wagner, G. P., and Dow, M. M.. 1989. Methods for the comparative-analysis of variation patterns. Systematic Zoology 38:201213.CrossRefGoogle Scholar
Cheverud, J. M., and Marroig, G.. 2007. Comparing covariance matrices: random skewers method compared to the common principal components model. Genetics and Molecular Biology 30:461469.CrossRefGoogle Scholar
Clark, A. A. 2010. Ancient DNA from the extinct folivorous xenarthrans, or sloths, with specific attention toward the Greater Antillean Megalonychids and the Patagonian Mylodontid, Mylodon darwinii. PhD Thesis. McMaster University, Ottawa.Google Scholar
Delsuc, F., Catzeflis, F. M., Stanhope, M. J., and Douzery, E. J. P.. 2001. The evolution of armadillos, anteaters and sloths depicted by nuclear and mitochondrial phylogenies: implications for the status of the enigmatic fossil Eurotamandua. Proceedings of the Royal Society of London B 268:16051615.CrossRefGoogle ScholarPubMed
Delsuc, F., Superina, M., Tilak, M., Douzery, E. J. P., and Hassanin, A. 2012. Molecular phylogenetics unveils the ancient evolutionary origins of the enigmatic fairy armadillos. Molecular Phylogenetics and Evolution 62:673680.CrossRefGoogle ScholarPubMed
Eisenberg, J. F. 1989. Mammals of the neotropics, Vol. 1. The northern neotropics: Panama, Colombia, Venezuela, Guyana, Suriname, French Guiana. University of Chicago Press, Chicago.Google Scholar
Eisenberg, J. F., and Redford, K. H.. 1999. Mammals of the neotropics, Vol. 3. The central neotropics: Ecuador, Peru, Bolivia, Brazil. University of Chicago Press, Chicago.Google Scholar
Elbroch, M. 2006. Animal skulls: a guide to North American species. Stackpole, Mechanicsburg, PA.Google Scholar
Engelmann, G. F. 1985. The phylogeny of the Xenarthra. Pp. 5164 in G. G. Montgomery, ed. The evolution and ecology of armadillos, sloths and vermilinguas. Smithsonian Institution Press, Washington, D.C.Google Scholar
Falconer, D. S., and MacKay, T. F. C.. 1996. Introduction to quantitative genetics. Longman, New York.Google Scholar
Fisher, R. A. 1930. The genetic theory of natural selection. Clarendon Press, Oxford.Google Scholar
Flury, B. 1988. Common principal components and related multivariate models. Wiley, New York.Google Scholar
Garcia, G. 2010. Análise comparativa dos padrões de covariação genética e fenotípica no crânio e mandíbula de Calomys expulsus (Rodentia: Muroidea). Master’s dissertation. Universidade de São Paulo, São Paulo.Google Scholar
Gardner, A. L. 2007. Mammals of South America, Vol. 1. Marsupials, xenarthrans, shrews, and bats. University of Chicago Press, Chicago.Google Scholar
Gaudin, T. J. 2004. Phylogenetic relationships among sloths (Mammalia, Xenarthra, Tardigrada): the craniodental evidence. Zoological Journal of the Linnean Society 140:255305.CrossRefGoogle Scholar
Goloboff, P. A., Catalano, S. A., Mirande, J. M., Szumik, C. A., Arias, J. S., Kallersjo, M., and Farris, J. S.. 2009. Phylogenetic analysis of 73060 taxa corroborates major eukaryotic groups. Cladistics 25:211230.CrossRefGoogle Scholar
Goswami, A. 2006. Morphological integration in the carnivoran skull. Evolution 60:169183.CrossRefGoogle ScholarPubMed
Goswami, A. 2007. Phylogeny, diet, and cranial integration in Australodelphian marsupials. PLoS ONE 2:e995.CrossRefGoogle ScholarPubMed
Goswami, A., and Polly, P. D.. 2010). Methods for studying morphological integration, modularity and covariance evolution. In J. Alroy, and G. Hunt, eds. Quantitative Methods in Paleobiology. Paleontological Society Short Course, October 30th, 2010. Paleontological Society Papers 16: 213–243.Google Scholar
Goswami, A., Smaers, J. B., Soligo, C., and Polly, P. D.. 2014. The macroevolutionary consequences of phenotypic integration: from development to deep time. Philosophical Transactions of the Royal Society of London B 369:20130254.CrossRefGoogle ScholarPubMed
Haber, A. 2015. The evolution of morphological integration in the ruminant skull. Evolutionary Biology 42:99114.CrossRefGoogle Scholar
Hallgrímsson, B., Jamniczky, H., Young, N. M., Rolian, C., Parsons, T. E., Boughner, J. C., and Marcucio, R. S. 2009. Deciphering the palimpsest: studying the relationship between morphological integration and phenotypic covariation. Evolutionary Biology 36:355376.CrossRefGoogle ScholarPubMed
Hansen, T. F., and Houle, D.. 2008. Measuring and comparing evolvability and constraint in multivariate characters. Journal of Evolutionary Biology 21:12011219.CrossRefGoogle ScholarPubMed
Hansen, T. F., and Voje, K. L.. 2011. Deviation from the line of least resistance does not exclude genetic constraints: a comment on Berner et al. (2010). Evolution 65:18211822.CrossRefGoogle Scholar
Hautier, L., Weisbecker, V., Goswami, A., Knight, F., Kardjilov, N., and Asher, R. J.. 2011. Skeletal ossification and sequence heterochrony in xenarthran evolution. Evolution and Development 13:460476.CrossRefGoogle ScholarPubMed
Hoganson, J. W., and McDonald, H. G.. 2007. First report of Jefferson’s ground sloth (Megalonyx jeffersonii) in North Dakota: paleobiogeographical and paleoecological significance. Journal of Mammalogy 88:7380.CrossRefGoogle Scholar
House, C. M., and Simmons, L. W.. 2005. The evolution of male genitalia: patterns of genetic variation and covariation in the genital sclerites of the dung beetle Onthophagus taurus. Journal of Evolutionary Biology 18:12811292.CrossRefGoogle ScholarPubMed
Jones, A. G., Arnold, S. J., and Bürger, R.. 2003. Stability of the G-matrix in a population experiencing pleiotropic mutation, stabilizing selection, and genetic drift. Evolution 57:17471760.CrossRefGoogle Scholar
Jones, A. G., Arnold, S. J., and Bürger, R.. 2004. Evolution and stability of the G-matrix on a landscape with a moving optimum. Evolution 58:16391654.CrossRefGoogle ScholarPubMed
Klingenberg, C. P., and Monteiro, L. R.. 2005. Distances and directions in multidimensional shape spaces: implications for morphometric applications. Systematic Biology 54:678688.CrossRefGoogle ScholarPubMed
Kohn, L. A., and Atchley, W. R.. 1988. How similar are genetic correlation structures? Data from mice and rats. Evolution 42:467481.Google ScholarPubMed
Krzanowski, W. J. 1979. Between-groups comparison of principal components. Journal of the American Statistical Association 74:703707.CrossRefGoogle Scholar
Krzanowski, W. J. 2000. Principles of multivariate analysis: a user’s perspective, rev. ed. Clarendon, Oxford.Google Scholar
Lande, R. 1979. Quantitative genetic analysis of multivariate evolution, applied to brain: body size allometry. Evolution 33:402416.Google ScholarPubMed
Lande, R., and Arnold, S. J.. 1983. The measurement of selection on correlated characters. Evolution 37:12101226.CrossRefGoogle ScholarPubMed
Lessells, C. M., and Boag, P. T.. 1987. Unrepeatable repeatabilities: a common mistake. Auk 104:116121.CrossRefGoogle Scholar
Lofsvold, D. 1986. Quantitative genetics of morphological differentiation in Peromyscus. I. Tests of the homogeneity of genetic covariance structure among species and subspecies. Evolution 40:559573.Google ScholarPubMed
MacPhee, R. D. E., White, J. L., and Woods, C. A.. 2000. New megalonychid sloths (Phyllophaga, Xenarthra) from the Quaternary of Hispaniola. American Museum Novitates 3303:132.2.0.CO;2>CrossRefGoogle Scholar
Marquéz, E. J., Cabeen, R., Woods, R. P., and Houle, D. 2012. The measurement of local variation in shape. Evolutionary Biology 39:419439.CrossRefGoogle Scholar
Marroig, G., and Cheverud, J. M.. 2001. A comparison of phenotypic variation and covariation patterns and the role of phylogeny. Ecology, and ontogeny during cranial evolution of New World monkeys. Evolution 55:25762600.CrossRefGoogle ScholarPubMed
Marroig, G., and Cheverud, J. M. 2005. Size as a line of least evolutionary resistance: diet and adaptive morphological radiation in New World monkeys. Evolution 59:11281142.CrossRefGoogle ScholarPubMed
Marroig, G., and Cheverud, J. M.. 2010. Size as a line of least resistance II: direct selection on size or correlated response due to constraints? Evolution 64:14701488.Google ScholarPubMed
Marroig, G., de Vivo, M., and Cheverud, J. M.. 2004. Cranial evolution in sakis (Pithecia, Platyrrhini) II: evolutionary processes and morphological integration. Journal of Evolutionary Biology 17:144155.CrossRefGoogle ScholarPubMed
Marroig, G., Shirai, L. T., Porto, A., de Oliveira, F. B., and De Conto, V.. 2009. The evolution of modularity in the mammalian skull II: evolutionary consequences. Evolutionary Biology 36:136148.CrossRefGoogle Scholar
Marroig, G., Melo, D. A. R., and Garcia, G.. 2012. Modularity, noise, and natural selection. Evolution 66:15061524.CrossRefGoogle ScholarPubMed
McAfee, R. K. 2009. Reassessment of the cranial characters of Glossotherium and Paramylodon (Mammalia: Xenarthra: Mylodontidae). Zoological Journal of the Linnean Society 155:885903.CrossRefGoogle Scholar
McDonald, H. G. 2005. Paleoecology of extinct xenarthrans and the Great American Biotic Interchange. Bulletin of the Florida Museum of Natural History 45:313333.Google Scholar
McDonald, H. G., Harington, C. R., and De Iuliis, G. 2000. The ground sloth, Megalonyx, from Pleistocene deposits of the Old Crow Basin, Yukon, Canada. Artic 53:213220.Google Scholar
McDonald, H. G., and Pelikan, S.. 2006. Mammoths and mylodonts: exotic species from two different continents in North American Pleistocene faunas. Quaternary International 142–143:229241.CrossRefGoogle Scholar
McGuigan, M. C. 2006. Studying phenotypic evolution using multivariate quantitative genetics. Molecular Ecology 15:883896.CrossRefGoogle ScholarPubMed
Melo, D., Garcia, G., Hubbe, A., Assis, A. P., and Marroig, G.. 2015. EvolQG—an an R package for evolutionary quantitative genetics, Version 1 [referees: 1 approved, 1 approved with reservations]. F1000Research 4:925.Google Scholar
Melo, D., and Marroig, G.. 2015. Directional selection can drive the evolution of modularity in complex traits. Proceedings of the National Academy of Sciences USA 112:470475.CrossRefGoogle ScholarPubMed
Miño-Boilini, A. R., and Carlini, A. A.. 2009. The Scelidotheriinae Ameghino, 1904 (Phyllophaga, Xenarthra) from the Ensenadan–Lujanian Stage/Ages (Early Pleistocene to Early-Middle Pleistocene–Early Holocene) of Argentina. Quaternary International 210:93101.CrossRefGoogle Scholar
Mitteroecker, P., and Bookstein, F. L.. 2009. The ontogenetic trajectory of the phenotypic covariance matrix, with examples from craniofacial shape in rats and humans. Evolution 63:727737.CrossRefGoogle ScholarPubMed
Möller-Krull, M., Delsuc, F., Churakov, G., Marker, C., Superina, M., Brosius, J., Douzery, E. J. P., and Schmitz, J.. 2007. Retroposed elements and their flanking regions resolve the evolutionary history of xenarthran mammals (armadillos, anteaters, and sloths). Molecular Biology and Evolution 24:25732582.CrossRefGoogle Scholar
Murphy, W. J., Eizirik, E., O’Brien, S. J., Madsen, O., Scally, M., Douady, C. J., Teeling, E., Ryder, O. A., Stanhope, M. J., de Jong, W. W., and Springer, M. S.. 2001. Resolution of the early placental mammal radiation using Bayesian phylogenetics. Science 294:23482351.Google Scholar
O’Leary, M. A., Bloch, J. I., Flynn, J. J., Gaudin, T. J., Giallombardo, A., Giannini, N. P., Goldberg, S. L., Kraatz, B. P., Luo, Z.-X., Meng, J., Ni, X., Novacek, M. J., Perini, F. A., Randall, Z. S., Rougier, G. W., Sargis, E. J., Silcox, M. T., Simmons, N. B., Spaulding, M., Velazco, P. M., Weksler, M., Wible, J. R., and Cirranello, A. L. 2013. The placental mammal ancestor and the post–K-Pg radiation of placentals. Science 339:662667.Google Scholar
Oliveira, F. B., Porto, A., and Marroig, G.. 2009. Covariance structure in the skull of Catarrhini: a case of pattern stasis and magnitude evolution. Journal of Human Evolution 56:417430.CrossRefGoogle ScholarPubMed
Pavlicev, M., Cheverud, J. M., and Wagner, G. P.. 2009. Measuring morphological integration using eigenvalue variance. Evolutionary Biology 36:157170.CrossRefGoogle Scholar
Porto, A., Oliveira, F. B. D., Shirai, L. T., Conto, V. D., and Marroig, G.. 2009. The evolution of modularity in the mammalian skull I: morphological integration patterns and magnitudes. Evolutionary Biology 36:118135.CrossRefGoogle Scholar
Porto, A., Shirai, L. T., de Oliveira, F. B., and Marroig, G.. 2013. Size variation, growth strategies, and the evolution of modularity in the mammalian skull. Evolution 67:33053322.CrossRefGoogle ScholarPubMed
Prôa, M., O’Higgins, P., and Monteiro, L. R.. 2012. Type I error rates for testing genetic drift with phenotypic covariance matrices: a simulation study. Evolution 67:185195.CrossRefGoogle ScholarPubMed
Puth, M., Neuhäuser, M., and Ruxton, G. D.. 2015. On the variety of methods for calculating confidence intervals by bootstrapping. Journal of Animal Ecology 84:892897.CrossRefGoogle ScholarPubMed
R Development Core Team 2013. A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.Google ScholarPubMed
Rager, L., Hautier, L., Forasiepi, A., Goswami, A., and Sánchez-Villagra, M.. 2014. Timing of cranial suture closure in placental mammals: phylogenetic patterns, intraspecific variation, and comparison with marsupials. Journal of Morphology 275:125140.CrossRefGoogle ScholarPubMed
Redford, K. H., and Eisenberg, J. F.. 1992. Mammals of the neotropics, Vol. 2. The Southern Cone: Chile, Argentina, Uruguay, Paraguay. University of Chicago Press, Chicago.Google Scholar
Reusch, T., and Blanckenhorn, W. U. 1998. Quantitative genetics of the dung fly Sepsis cynipsea: Cheverud’s conjecture revisited. Heredity 81:111119.CrossRefGoogle Scholar
Roff, D. A. 1995. The estimation of genetic correlations from phenotypic correlations: a test of Cheverud’s conjecture. Heredity 74:481490.CrossRefGoogle Scholar
Roff, D. A. 1996. The evolution of genetic correlations: an analysis of pattern. Evolution 50:13921403.CrossRefGoogle Scholar
Roff, D. A. 1997. Evolutionary quantitative genetics. Chapman and Hall, London.CrossRefGoogle Scholar
Schluter, D. 1996. Adaptive radiation along genetic lines of least resistance. Evolution 50:17661774.CrossRefGoogle ScholarPubMed
Shaw, F. H., Shaw, R. G., Wilkinson, G. S., and Turelli, M.. 1995. Changes in genetic variances and covariances: G whiz!. Evolution 49:12601267.CrossRefGoogle Scholar
Shirai, L. T., and Marroig, G.. 2010. Skull modularity in neotropical marsupials and monkeys: size variation and evolutionary constraint and flexibility. Journal of Experimental Zoology B 314B:663683.CrossRefGoogle Scholar
Simpson, G. G. 1980. Splendid isolation: the curious history of South American mammals. Yale University Press, New Haven, Conn.Google Scholar
Sokal, R. R., and Rolhf, F. J.. 1995. Biometry. Freeman, New York.Google Scholar
Steppan, S. J. 1997. Phylogenetic analysis of phenotypic covariance structure. I. Contrasting results from matrix correlation and common principal component analyses. Evolution 51:571586.Google ScholarPubMed
Steppan, S. J., Phillips, P. C., and Houle, D.. 2002. Comparative quantitative genetics: evolution of the G matrix. Trends in Ecology and Evolution 17:320327.CrossRefGoogle Scholar
Stock, C. 1942. A ground sloth in Alaska. Science 95:552553.CrossRefGoogle ScholarPubMed
Turelli, M. 1988. Phenotypic evolution, constant covariances and the maintenance of additive variance. Evolution 43:13421347.CrossRefGoogle Scholar
Van der Linde, K., and Houle, D. 2009. Inferring the nature of allometry from geometric data. Evolutionary Biology 36:311322.CrossRefGoogle Scholar
Vizcaino, S. F., Bargo, M. S., and Fariña, R. A.. 2008. Form, function, and paleobiology in xenarthrans. Pp. 8699 in S. F. Vizcaino, and W. J. Loughry, eds. The biology of the Xenarthra. University Press of Florida, Gainesville.Google Scholar
Wagner, G. P., and Altenberg, L.. 1996. Complex adaptations and the evolution of evolvability. Evolution 50:967976.CrossRefGoogle ScholarPubMed
Walker, J.A. 2000. Ability of geometric morphometric methods to estimate a known covariance matrix. Systematic Biology 49:686696.CrossRefGoogle ScholarPubMed
Webster, M., and Zelditch, M. L.. 2011. Evolutionary lability of integration in Cambrian ptychopariod trilobites. Evolutionary Biology 38:144162.CrossRefGoogle Scholar
Wilkinson, G. S., Fowler, K., and Partridge, L.. 1990. Resistance of genetic correlation structure to directional selection in Drosophila melanogaster. Evolution 44:19902003.CrossRefGoogle ScholarPubMed
Wright, S. 1931. Evolution in Mendelian populations. Genetics 16:97159.Google ScholarPubMed
Young, N. M., Wagner, G. P., and Hallgrímsson, B.. 2010. Development and the evolvability of human limbs. Proceedings of the National Academy of Sciences USA 107:34003405.CrossRefGoogle ScholarPubMed
9
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

A case study of extant and extinct Xenarthra cranium covariance structure: implications and applications to paleontology
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

A case study of extant and extinct Xenarthra cranium covariance structure: implications and applications to paleontology
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

A case study of extant and extinct Xenarthra cranium covariance structure: implications and applications to paleontology
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *