Skip to main content Accessibility help
×
Home

Article contents

Convergence on dental simplification in the evolution of whales

Published online by Cambridge University Press:  28 May 2018

Carlos Mauricio Peredo
Affiliation:
Department of Environmental Science and Policy, George Mason University, Fairfax, Virginia 22030, U.S.A.; andDepartment of Paleobiology, National Museum of Natural History, Washington, D.C. 20560, U.S.A. E-mail: CPeredo@masonlive.gmu.edu
Julio S. Peredo
Affiliation:
9638 Baltimore Avenue, Laurel, Maryland 20723, U.S.A. E-mail: juliop1@umbc.edu
Nicholas D. Pyenson
Affiliation:
Department of Paleobiology, National Museum of Natural History, Washington, D.C. 20560, US.A.; andDepartments of Mammalogy and Paleontology, Burke Museum of Natural History and Culture, Seattle, Washington 98105, U.S.A. E-mail: pyensonn@si.edu
Corresponding

Abstract

The fossil record of mammal dentition provides crucial insight into key ecological and functional transitions throughout mammalian evolutionary history. For cetaceans, both extant clades differ markedly from their stem ancestors; neither retains the differentiated dentition or the tribosphenic molars characteristic of Mammalia. We used quantitative measures of dental complexity across fossil and living cetaceans to identify a trend toward dental simplicity through the Neogene. Both extant cetacean clades depart from the ancestral mammalian condition and concurrently converge upon a reduced and simplified dentition; modern mysticetes all have become entirely edentulous (at birth), and living odontocetes possess teeth as single-rooted, conical pegs. These two parallel trends accompany major shifts in feeding strategy (i.e., filter feeding in mysticetes and echolocation in odontocetes), suggesting that these evolutionary innovations for prey acquisition are enabling factors for the loss of prey processing and subsequent convergence on dental simplification.

Type
Articles
Copyright
© 2018 The Paleontological Society. All rights reserved. 

Access options

Get access to the full version of this content by using one of the access options below.

References

Armfield, B. A., Zheng, Z., Bajpai, S., Vinyard, C. J., and Thewissen, J.. 2013. Development and evolution of the unique cetacean dentition. PeerJ 1:117.CrossRefGoogle ScholarPubMed
Boyer, D. M. 2008. Relief index of second mandibular molars is a correlate of diet among prosimian primates and other euarchontan mammals. Journal of Human Evolution 55:11181137.CrossRefGoogle ScholarPubMed
Bunn, J. M., Boyer, D. M., Lipman, Y., St Clair, E. M., Jernvall, J., and Daubechies, I.. 2011. Comparing Dirichlet normal surface energy of tooth crowns, a new technique of molar shape quantification for dietary inference, with previous methods in isolation and in combination. American Journal of Physical Anthropology 145:247261.CrossRefGoogle ScholarPubMed
Cignoni, P., Callieri, M., Corsini, M., Dellepiane, M., Ganovelli, F., and Ranzuglia, G.. 2008. Meshlab: an open-source mesh processing tool. Eurographics Italian Chapter Conference 2008:129136.Google Scholar
Eschricht, D. F. 1849. Zoologisch-anatomisch-physiologische untersuchungen über die nordischen Wallthiere. Verlag von Leopold Voss, Leipzig.Google Scholar
Evans, A. R., and Janis, C. M.. 2014. The evolution of high dental complexity in the horse lineage. Annales Zoologici Fennici 51:7379.CrossRefGoogle Scholar
Evans, A. R., Wilson, G. P., Fortelius, M., and Jernvall, J.. 2007. High-level similarity of dentitions in carnivorans and rodents. Nature 445:7881.CrossRefGoogle ScholarPubMed
Geisler, J. H., Colbert, M. W., and Carew, J. L.. 2014. A new fossil species supports an early origin for toothed whale echolocation. Nature 508:383386.CrossRefGoogle ScholarPubMed
Geisler, J. H., McGowen, M. R., Yang, G., and Gatesy, J.. 2011. A supermatrix analysis of genomic, morphological, and paleontological data from crown Cetacea. BMC Evolutionary Biology 11:133.CrossRefGoogle ScholarPubMed
Gradstein, F. M., Ogg, J. G., Schmitz, M. D., and Ogg, G. M.. 2012. The geologic time scale. Elsevier BV, Oxford, U.K.Google Scholar
Gregory, W. K. 1921. The origin and evolution of the human dentition: a palaeontological review. Journal of Dental Research 3:87228.CrossRefGoogle Scholar
Hocking, D. P., Marx, F. G., Park, T., Fitzgerald, E. M. G., and Evans, A. R.. 2017. A behavioural framework for the evolution of feeding in predatory aquatic mammals. Proceedings of the Royal Society of London B, 284. doi: 10.1098/rspb.2016.2750.Google ScholarPubMed
Ishikawa, H., and Amasaki, H.. 1995. Development and physiological degradation of tooth buds and development of rudiment of baleen plate in southern minke whale, Balaenoptera acutorostrata. Journal of Veterinary Medical Science 57:665670.CrossRefGoogle ScholarPubMed
Jernvall, J., Hunter, J. P., and Forteluis, M.. 1996. Molar tooth diversity, disparity, and ecology in Cenozoic ungulate radiations. Science 274:14891492.CrossRefGoogle ScholarPubMed
Karlsen, K. 1962. Development of tooth germs and adjacent structures in the whalebone whale (Balaenoptera physalus (L.)). Hvalrådets Skrifter 45:156.Google Scholar
Lambert, O., Muizon, C. D., and Bianucci, G.. 2015. A new archaic homodont toothed cetacean (Mammalia, Cetacea, Odontoceti) from the early Miocene of Peru. Geodiversitas 37:79108.CrossRefGoogle Scholar
Lindberg, D. R., and Pyenson, N. D.. 2007. Things that go bump in the night: evolutionary interactions between cephalopods and cetaceans in the tertiary. Lethaia 40:335343.CrossRefGoogle Scholar
Lipps, J. H., and Mitchell, E.. 1976. Trophic model for the adaptive radiations and extinctions of pelagic marine mammals. Paleobiology 2:147155.CrossRefGoogle Scholar
Lucas, P. W. 2004. Dental functional morphology: how teeth work. Cambridge University Press, Cambridge, U.K.CrossRefGoogle Scholar
Marshall, C. D., and Goldbogen, J. A.. 2015. Feeding mechanisms. Pp. 95118 in M. A. Castellini and J.-A. Mellish, eds. Marine mammal physiology: Requisites for ocean living. CRC Press, Boca Raton, Fla.Google Scholar
Marx, F. G. 2011. The more the merrier? A large cladistic analysis of mysticetes, and comments on the transition from teeth to baleen. Journal of Mammalian Evolution 18:77100.CrossRefGoogle Scholar
McGowen, M. R., Spaulding, M., and Gatesy, J.. 2009. Divergence date estimation and a comprehensive molecular tree of extant cetaceans. Molecular Phylogenetics and Evolution 53:891906.CrossRefGoogle Scholar
Osborn, H. F. 1907. Evolution of mammalian molar teeth. Macmillan, New York.Google Scholar
Owen, R. 1845. Odontography; or, a treatise on the comparative anatomy of the teeth, their physiological relations, mode of sevelopement, and microscipic structure, in the vertebrate animals. Hippolyte Bailierre, London.Google Scholar
Pampush, J. D., Winchester, J. M., Morse, P. E., Vining, A. Q., Boyer, D. M., and Kay, R. F.. 2016. Introducing molaR: a new R package for quantitative topographic analysis of teeth (and other topographic surfaces). Journal of Mammalian Evolution 23:397412.CrossRefGoogle Scholar
Peredo, C. M., Pyenson, N. D., and Boersma, A. T.. 2017. Decoupling tooth loss from the evolution of baleen in whales. Frontiers in Marine Science 4:111.CrossRefGoogle Scholar
Prothero, D. R., Ivany, L. C., and Nesbitt, E. A.. 2003. From greenhouse to icehouse: the marine Eocene–Oligocene transition. Columbia University Press, New York.Google Scholar
Pyenson, N. D. 2017. The ecological rise of whales chronicled by the fossil record. Current Biology 27:R558R564.CrossRefGoogle ScholarPubMed
Ridewood, W. G. 1923. Observations on the skull in foetal specimens of whales of the genera Megaptera and Balaenoptera . Philosophical Transactions of the Royal Society of London B 211:209272.CrossRefGoogle Scholar
Saint-Hilaire, G. 1807. Considérations sur les pièces de la tête osseuse des animaux vertébrés, et particulièrement sur celles du crâne des oiseaux. Annales du museum d’historia naturelle 10:342365.Google Scholar
Smits, P. D., and Evans, A. R.. 2012. Functional constraints on tooth morphology in carnivorous mammals. BMC Evolutionary Biology 12:146156.CrossRefGoogle ScholarPubMed
Steeman, M. E., Hebsgaard, M. B., Fordyce, R. E., Ho, S. Y., Rabosky, D. L., Nielsen, R., Rahbek, C., Glenner, H., Sørensen, M. V., and Willerslev, E.. 2009. Radiation of extant cetaceans driven by restructuring of the oceans. Systematic Biology 58:573585.CrossRefGoogle ScholarPubMed
Tanaka, Y., and Fordyce, R. E.. 2015. Historically significant late Oligocene dolphin Microcetus hectori Benham 1935: a new species of Waipatia (Platanistoidea). Journal of the Royal Society of New Zealand 45:135150.CrossRefGoogle Scholar
Tanaka, Y., and Fordyce, R. E.. 2016. Awamokoa tokarahi, a new basal dolphin in the Platanistoidea (late Oligocene, New Zealand). Journal of Systematic Palaeontology 15:365386.CrossRefGoogle Scholar
Thewissen, J., Sensor, J. D., Clementz, M. T., and Bajpai, S.. 2011. Evolution of dental wear and diet during the origin of whales. Paleobiology 37:655669.CrossRefGoogle Scholar
Thewissen, J. G. M., Hieronymus, T. L., George, J. C., Suydam, R., Stimmelmayr, R., and McBurney, D.. 2017. Evolutionary aspects of the development of teeth and baleen in the bowhead whale. Journal of Anatomy 230:549566.CrossRefGoogle ScholarPubMed
Uhen, M. D. 2004. Form, function, and anatomy of Dorudon atrox (Mammalia, Cetacea): an archaeocete from the Middle to Late Eocene of Egypt. University of Michigan Museum of Paleontology Papers on Paleontology 34:1222.Google Scholar
Uhen, M. D. 2017. Dental morphology. Pp. 246250 in B. Würsig, J. G. M. Thewissen, and K. M. Kovacs, eds. Encyclopedia of marine mammals. Academic, London.Google Scholar
Uhen, M. D., and Pyenson, N. D.. 2007. Diversity estimates, biases, and histriographic effects: resolving cetacean diversity in the Tertiary. Paleontologia Electronica 10:122.Google Scholar
Ungar, P. S. 2010. Mammal teeth: origin, evolution, and diversity. Johns Hopkins University Press, Baltimore, Md.Google Scholar
Werth, A. J. 2000. Feeding in marine mammals. Pp. 475514 in K. Schwenk, ed. Feeding: form, function and evolution in tetrapod vertebrates. Academic, New York.Google Scholar
Zachos, J., Pagani, M., Sloan, L., Thomas, E., and Billups, K.. 2001a. Trends, rhythms, and aberrations in global climate 65 Ma to Present. Science 292:686693.CrossRefGoogle ScholarPubMed
Zachos, J. C., Shackleton, N. J., Revenaugh, J. S., Pälike, H., and Flower, B. P.. 2001b. Climate response to orbital forcing across the Oligocene–Miocene boundary. Science 292:274278.CrossRefGoogle ScholarPubMed

Altmetric attention score

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 60
Total number of PDF views: 202 *
View data table for this chart

* Views captured on Cambridge Core between 28th May 2018 - 20th January 2021. This data will be updated every 24 hours.

Hostname: page-component-76cb886bbf-rm8z7 Total loading time: 0.552 Render date: 2021-01-20T08:35:36.286Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Convergence on dental simplification in the evolution of whales
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Convergence on dental simplification in the evolution of whales
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Convergence on dental simplification in the evolution of whales
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *