Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-28T03:26:16.873Z Has data issue: false hasContentIssue false

The early evolution of synapsids, and the influence of sampling on their fossil record

Published online by Cambridge University Press:  23 June 2013

Neil Brocklehurst
Affiliation:
Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Invalidenstrae 43, D-10115 Berlin, Germany. E-mail: neil.brocklehurst@mfn-berlin.de
Christian F. Kammerer
Affiliation:
Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Invalidenstrae 43, D-10115 Berlin, Germany. E-mail: neil.brocklehurst@mfn-berlin.de
Jörg Fröbisch
Affiliation:
Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Invalidenstrae 43, D-10115 Berlin, Germany. E-mail: neil.brocklehurst@mfn-berlin.de

Abstract

Synapsids dominated the terrestrial realm between the late Pennsylvanian and the Triassic. Their early evolution includes some of the first amniotes to evolve large size, herbivory, and macro-predators. However, little research has focused on the changes in diversity occurring during this early phase in their evolutionary history, with more effort concentrating on later events such the Permo-Triassic extinction. Here we assess synapsid diversity, at both the species and genus levels, between the Carboniferous (Moscovian) and the Middle Permian (Capitanian). A raw, taxic diversity (richness) estimate is generated, and we use two separate methods to correct for sampling biases in this curve. To remove the effect of anthropogenic sampling bias, we apply a recently published modification of the residual diversity method, and then generate a supertree, using matrix representation with parsimony to infer ghost lineages and obtain a phylogenetic diversity estimate. The general diversity pattern reflects the initial diversification of synapsids in the late Pennsylvanian and early Cisuralian, which was followed by an extinction event during the Sakmarian. Diversity recovered during the Artinskian and Kungurian, coinciding with the radiation of Caseidae, although other families begin to decline. A second extinction event occurred across the Kungurian/Roadian boundary, in which Edaphosauridae and Ophiacodontidae died out although Caseidae and Therapsida diversified. The sampling-corrected curves reveal further extinction during the Roadian, although therapsids were again unaffected. Pelycosaurian-grade synapsids survived during the Wordian and Capitanian, but were a minor part of an otherwise therapsid-dominated fauna. Evidence of significant anthropogenic sampling bias calls into question previous diversity studies that have not employed sampling correction.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alroy, J., Marshall, C. R., Bambach, R. K., Bezuko, K., Foote, M., Fürsich, F. T., Hansen, T. A., Holland, S. M., Ivany, L., Jablonski, D., Jacobs, D. K., Jones, D. C., Kosnik, M. A., Lidgard, S., Low, S., Miller, A. I., Novack-Gottshall, P. M., Olszewski, T. D., Patzkowsky, M. E., Raup, D. M., Roy, K., Sepkoski, J. J. Jr., Sommers, M. G., Wagner, P. J., and Webber, A. 2001. Estimates of sampling standardization on estimates of Phanerozoic marine diversification. Proceedings of the National Academy of Sciences 98:62616266.CrossRefGoogle ScholarPubMed
Alroy, J., Aberhan, M., Bottjer, D. J., Foote, M., Fürsich, F. T., Harries, P. J., Hendy, A. J. W., Holland, S. M., Ivany, L. C., Kiessling, W., Kosnik, M. A., Marshall, C. R., McGowan, A. J., Miller, A. I., Olszewski, T. D., Patzkowsky, M. E., Peters, S. E., Villier, L., Wagner, P. J., Bonuso, N., Borkow, P. S., Brenneis, B., Clapham, M. E., Fall, L., Ferguson, C. A., Hanson, V. L., Krug, A. Z., Layou, K. M., Leckey, E. H., Nürnberg, S., Powers, C. M., Sessa, J. A., Simpson, C., Tomašových, A., and Visaggi, C. C. 2008. Phanerozoic trends in the global diversity of marine invertebrates. Science 321:97100.CrossRefGoogle ScholarPubMed
Amson, E., and Laurin, M. 2011. On the affinities of Tetraceratops insignis, an Early Permian synapsid. Acta Palaeontologica Polonica 56:301312.CrossRefGoogle Scholar
Anderson, J. S., and Reisz, R. R. 2004. Pyozia mesenensis, a new, small varanopid (Synapsida, Eupelycosauria) from Russia: “Pelycosaur” diversity in the Middle Permian. Journal of Vertebrate Paleontology 24:173179.CrossRefGoogle Scholar
Angielczyk, K. D., and Rubidge, B. S. 2012. Skeletal morphology, phylogenetic relationships and stratigraphic range of Eosimops newtoni Broom, 1921, a pylaecephalid dicynodont (Therapsida, Anomodontia) from the Middle Permian of South Africa. Journal of Systematic Palaeontology 11:191231.CrossRefGoogle Scholar
Barrett, P. M., McGowan, A. J., and Page, V. 2009. Dinosaur diversity and the rock record. Proceedings of the Royal Society of London B 276:26672674.Google ScholarPubMed
Baum, B. R. 1992. Combining trees as a way of combining data sets for phylogenetic inference, and the desirability for combining gene trees. Taxon 41:110.CrossRefGoogle Scholar
Benson, R. B. J. 2012. The global interrelationships of basal synapsids: cranial and postcranial morphological partitions suggest different topologies. Journal of Systematic Palaeontology 10:601624.CrossRefGoogle Scholar
Benson, R. B. J., and Upchurch, P. 2012. Diversity trends in the establishment of terrestrial vertebrate ecosystems: interactions between spatial and temporal sampling biases. Geology 41:4346.CrossRefGoogle Scholar
Benson, R. B. J., Butler, R. J., Lindgren, J., and Smith, A. S. 2010. Palaeodiversity of Mesozoic marine reptiles: mass extinctions and temporal heterogeneity in geologic megabiases affecting vertebrates. Proceedings of the Royal Society of London B 277:829834.Google Scholar
Benton, M. J. 2008. Progress and competition in macroevolution. Biological Reviews 62:305338.CrossRefGoogle Scholar
Benton, M. J. 2012. No gap in the Middle Permian record of terrestrial vertebrates. Geology 40:339342.CrossRefGoogle Scholar
Benton, M. J., Dunhill, A. M., Lloyd, G. T., and Marx, F. G. 2011. Assessing the quality of the fossil record: insights from vertebrates. InMcGowan, A. J. and Smith, A. B., eds. 2011. Comparing the geological and fossil records: implications for biodiversity studies. Geological Society of London Special Publication 358:6394.CrossRefGoogle Scholar
Bininda-Emonds, O. R., Jones, K. E., Price, S. A., Cardillo, M., Greyner, R., and Purvis, A. 2004. Garbage in, garbage out. Data issues in supertree construction. Pp. 267280inBeninda Edmonds, O. R., ed. 2004. Phylogenetic supertrees: combining information to reveal the tree of life. Kluwer Academic, Dordrecht, The Netherlands.CrossRefGoogle Scholar
Botha-Brink, J., and Modesto, S. 2009. Anatomy and relationships of the Middle Permian varanopid Heleosaurus scholtzi based on a social aggregation from the Karoo Basin of South Africa. Journal of Vertebrate Paleontology 29:389400.CrossRefGoogle Scholar
Bronzati, M., Motefeltro, F. C., and Langer, M. C. 2012. A species-level supertree of Crocodyliformes. Historical Biology 24:598606.CrossRefGoogle Scholar
Butler, R. J., Barrett, P. M., Nowbath, S., and Upchurch, P. 2009. Estimating the effects of the rock record on pterosaur diversity patterns: implications for hypotheses of bird/pterosaur competitive replacement. Paleobiology 35:432446.CrossRefGoogle Scholar
Butler, R. J., Benson, R. B. J., Carrano, W. T., Mannion, P. D., and Upchurch, P. 2011. Sea level, dinosaur diversity and sampling: investigating the ‘common cause' hypothesis in the terrestrial realm. Proceedings of the Royal Society of London B 278:11651170.Google ScholarPubMed
Campione, N. E., and Reisz, R. R. 2010. Varanops brevirostris (Eupelycosauria: Varanopidae) from the lower Permian of Texas, with discussion of varanopid morphology and interrelationships. Journal of Vertebrate Paleontology 30:724746.CrossRefGoogle Scholar
Carroll, R. L. 1964. The earliest reptiles. Journal of the Linnean Society (Zoology) 45:6383.Google Scholar
Carroll, R. L. 1967. A limnoscelid reptile from the Middle Pennsylvanian. Journal of Paleontology 41:12561261.Google Scholar
Cope, E. D. 1878. Description of extinct Batrachia and Reptilia from the Permian Formation of Texas. Proceedings of the American Philosophical Society 17:505530.Google Scholar
Crampton, J. S., Beu, A. G., Cooper, R. A., Jones, C. M., Marshall, B., and Maxwell, P. A. 2003. Estimating the rock volume bias in paleobiodiversity studies. Science 301:358360.CrossRefGoogle ScholarPubMed
Dilkes, D. W., and Reisz, R. R. 1996. First record of a basal synapsid (‘mammal-like reptile') in Gondwana. Proceedings of the Royal Society of London B 263:11651170.Google Scholar
DiMichele, W. A., Tabor, N. J., Chaney, D. S., and Nelson, W. J. 2006. From wetlands to wet spots: environmental tracking and the fate of Carboniferous elements in Early Permian tropical floras. InGreb, S. F. and DiMichele, W. A., eds. Wetlands through time. Geological Society of America Special Paper 399:223248.Google Scholar
DiMichele, W. A., Montanez, I. P., Poulsen, C. J., and Tabor, N. 2009. Climate and vegetational regime shifts in the late Paleozoic ice age earth. Geobiology 7:200226.CrossRefGoogle ScholarPubMed
Efremov, J. A. 1938. Some new Permian Reptiles of the USSR. Comptes Rendus (Doklady) Akademii Nauk SSSR (Paleontology) 19:121126.Google Scholar
Efremov, J. A. 1954. The fauna of terrestrial vertebrates in the Permian copper sandstones of the western Cis-Urals. Transactions of the Paleontological Institute, Akademii Nauk SSSR 56:1146.Google Scholar
Efremov, J. A. 1956. American elements in the fauna of the USSR. Doklady Akademii Nauk SSSR 111:10911094.Google Scholar
Fröbisch, J. 2007. The cranial anatomy of Kombuisia frerensis Hotton (Synapsida, Dicynodontia) and a new phylogeny of anomodont therapsids. Zoological Journal of the Linnaean Society 150:117144.CrossRefGoogle Scholar
Fröbisch, J. 2008. Global taxonomic diversity of anomodonts (Tetrapoda, Therapsida) and the terrestrial rock record across the Permian-Triassic boundary. PLoS ONE 3:e3733.CrossRefGoogle ScholarPubMed
Fröbisch, J. 2012a. Synapsid diversity and the rock record in the Permian-Triassic Beaufort Group (Karoo Supergroup), South Africa. InKammerer, C. F., Angielczyk, K. D., and Fröbisch, J., eds. The early evolutionary history of the Synapsida. Springer, Dordrecht, The Netherlands(in press).Google Scholar
Fröbisch, J. 2012b. Vertebrate diversity across the end-Permian mass extinction—separating biological and geological signals. Palaeogeography, Palaeoclimatology, Palaeoecology 372:5061.CrossRefGoogle Scholar
Fröbisch, J., Angielczyk, K. D., and Sidor, C. A. 2010. The Triassic dicynodont Kombuisia (Synapsida, Anomodontia) from Antarctica, a refuge from the terrestrial Permian-Triassic mass extinction. Naturwissenschaften 97:187196.CrossRefGoogle ScholarPubMed
Fröbisch, J., Schoch, R. R., Müller, J., Schindler, T., and Schweiss, D. 2011. A new basal sphenacodontid synapsid from the Late Carboniferous of the Saar-Hahe Basin, Germany. Acta Palaeontologica Polonica 56:113120.CrossRefGoogle Scholar
Goloboff, P. A., Farris, J. S., and Nixon, K. C. 2008. TNT, a free program for phylogenetic analysis. Cladistics 24:774778.CrossRefGoogle Scholar
Gradstein, F. M., Ogg, J. G., Schmitz, M., and Ogg, G. 2012. The geologic time scale 2012. Cambridge University Press, Cambridge.Google Scholar
Hammer, Ø., Harper, D. A. T., and Ryan, P. D. 2001. PAST: palaeontological statistics software package for education and data analysis. Palaeontologica Electronica 4:1–9.Google Scholar
Hone, D. W. E., and Benton, M. J. 2008. Contrasting supertrees and total-evidence methods: pterosaur origins. Zitteliana B 28:3560.Google Scholar
Huttenlocker, A. K., Sidor, C. A., and Smith, R. M. H. 2011. A new specimen of Promoschorhynchus (Therapsida: Therocephalia: Akidnognathidae) from the Lower Triassic of South Africa and its implications for Theriodont survivorship across the Permo-Triassic boundary. Journal of Vertebrate Paleontology 31:405421.CrossRefGoogle Scholar
Irmis, R. B., Whiteside, J. H., and Kammerer, C. F. 2012. Non-biotic controls of observed diversity in the paleontologic record: an example from the Permo-Triassic Karoo Basin of South Africa. Palaeogeography, Palaeoclimatology, Palaeoecology 371:6277.Google Scholar
Ivakhnenko, M. F. 1995. New primitive therapsids from the Permian of Eastern Europe. Paleontologicheskii Zhurnal 29:110119.Google Scholar
Izart, A., Palhol, F., Gleixner, G., Elie, M., Blasie, T., Suarez-Ruiz, I., Sachsenhofer, R. F., Privalov, V. A., and Panova, E. A. 2012. Palaeoclimate reconstruction from biomarker geochemistry and stable isotopes of n-alkanes from Carboniferous and Early Permian humic coals and limnic sediments in western and eastern Europe. Organic Geochemistry 43:125149.CrossRefGoogle Scholar
Jalil, N. E. 1999. Continental Permian and Triassic vertebrate localities from Algeria and Morocco and their stratigraphical correlations. Journal of African Earth Science 29:219226.CrossRefGoogle Scholar
Kammerer, C. F. 2011. Systematics of the Anteosauria (Therapsida: Dinocephalia). Journal of Systematic Palaeontology 9:261302.CrossRefGoogle Scholar
Kemp, T. S. 2006. The origin and early radiation of the therapsid mammal-like reptiles: a palaeobiological hypothesis. Journal of Evolutionary Biology 19:12311247.CrossRefGoogle ScholarPubMed
Kessler, J. L. L., Soreghan, G. S., and Wacker, H. J. 2001. Equatorial aridity in western Pangaea: Lower Permian loessite and dolomitic palaeosols in northeastern New Mexico. Journal of Sedimentary Research 71:817832.CrossRefGoogle Scholar
Lane, A., Janis, C. M., and Sepkoski, J. J. Jr. 2005. Estimating paleodiversities: a test of the taxic and phylogenetic methods. Paleobiology 31:2134.2.0.CO;2>CrossRefGoogle Scholar
Langston, W. Jr. 1965. Oedaleops campi (Reptilia: Pelycosauria) new genus and species from the Lower Permian of New Mexico, and the Family Eothyrididae. Bulletin of the Texas Memorial Museum 9:547.Google Scholar
Laurin, M., and Reisz, R. R. 1990. Tetraceratops is the oldest known therapsid. Nature 345:249250.CrossRefGoogle Scholar
Laurin, M., and Reisz, R. R. 1996. The osteology and relationships of Tetraceratops insignis, the oldest known therapsid. Journal of Vertebrate Paleontology 16:95102.CrossRefGoogle Scholar
Lefebvre, B. 2005. Stylophoran supertrees revisited. Acta Palaeontologica Polonica 50:477486.Google Scholar
Liu, J., Rubidge, B. S., and Li, J. 2009. New basal synapsid supports Laurasian origin for therapsids. Acta Palaeontological Polonica 54:393400.CrossRefGoogle Scholar
Lloyd, G. T. 2012. A refined modelling approach to assess the influence of sampling on palaeobiodiversity curves: new support for declining Cretaceous dinosaur richness. Biology Letters 8:123126.CrossRefGoogle ScholarPubMed
Lloyd, G. T., Davis, K. E., Pisani, D., Tarver, J. E., Ruta, M., Sakamoto, M., Hone, D. W. E., Jennings, R., and Benton, M. J. 2008. Dinosaurs and the Cretaceous terrestrial revolution. Proceedings of the Royal Society of London B 275:24832490.Google ScholarPubMed
Lozovsky, V. R. 2003. Correlation of the continental Permian of Northern Pangaea: a review. Bollettino della Società Italiano, Volume Especiale 2:239244.Google Scholar
Lozovsky, V. R. 2005. Olson's gap or Olson's bridge, that is the question. InLucas, S. G. and Zeigler, K. E., eds. The nonmarine Permian. New Mexico Museum of Natural History and Science Bulletin 38:179184.Google Scholar
Lucas, S. G. 2004. A global hiatus in the Middle Permian tetrapod fossil record. Stratigraphy 1:4764.CrossRefGoogle Scholar
Lucas, S. G. 2006. Global Permian tetrapod biostratigraphy and biochronology. InLucas, S. G., Cassinis, G., and Schneider, J. W., eds. Non-marine Permian biostratigraphy and biochronology. Geological Society of London Special Publication 265:6593.CrossRefGoogle Scholar
Lucas, S. G., and Heckert, S. B. 2001. Olson's gap: a global hiatus in the record of Middle Permian tetrapods. Journal of Vertebrate Paleontology 21:75A.Google Scholar
Lucas, S. G., Cassinis, G., and Schneider, J. W. 2006. Non-marine Permian biostratigraphy and biochronology: an introduction. InLucas, S. G., Cassinis, G., and Schneider, J. W., eds. Non-marine Permian biostratigraphy and biochronology. Geological Society of London Special Publication 265:114.CrossRefGoogle Scholar
Maddin, H. C., Sidor, C. A., and Reisz, R. R. 2008. Cranial anatomy of Ennatosaurus tecton (Synapsida: Caseidae) from the Middle Permian of Russia and the evolutionary relationships of Caseidae. Journal of Vertebrate Paleontology 28:160180.CrossRefGoogle Scholar
Mannion, P. D., Upchurch, P., Carrano, W. T., and Barrett, P. M. 2011. Testing the effect of the rock record on diversity: a multidisciplinary approach to elucidating the generic richness of sauropodomorph dinosaurs through time. Biological Reviews 86:157181.CrossRefGoogle ScholarPubMed
Marjanović, D., and Laurin, M. 2007. Fossils, molecules, divergence times and the origin of lissamphibians. Systematic Biology 56:369388.CrossRefGoogle ScholarPubMed
Matthew, E. D. 1908. A four horned pelycosaurian from the Permian of Texas. Bulletin of the American Museum of Natural History 24:183185.Google Scholar
Mazierski, D. M., and Reisz, R. R. 2010. Description of a new specimen of Ianthasaurus hardestiorum (Eupelycosauria: Edaphosauridae) and a re-evaluation of edaphosaurid phylogeny. Canadian Journal of Earth Science 47:901912.CrossRefGoogle Scholar
McKinney, M. L. 1990. Classifying and analysing evolutionary trends. Pp. 2858inMcNamara, K. J., ed. Evolutionary trends. Belhaven, London.Google Scholar
Miller, A. I., and Foote, M. 1996. Calibrating the Ordovician radiation of marine life: implications for Phanerozoic diversity trends. Paleobiology 22:304309.CrossRefGoogle ScholarPubMed
Modesto, S. 1994. The Lower Permian synapsid Glaucosaurus from Texas. Palaeontology 37:5160.Google Scholar
Modesto, S. 1995. The skull of the herbivorous synapsid Edaphosaurus boanerges from the lower Permian of Texas. Palaeontology 38:213239.Google Scholar
Modesto, S., Smith, R. M. H., Campione, N. E., and Reisz, R. R. 2011. The last “pelycosaur”: a varanopid synapsid from the Pristerognathus Assemblage Zone, Middle Permian of South Africa. Naturwissenschaften 98:10271034.CrossRefGoogle ScholarPubMed
Montanez, I. P., Tabor, N. J., Niemeier, D., DiMichele, W. A., Frank, T. D., Fielding, C. R., Isbell, J. L., Birgenheier, L. P., and Rygel, M. C. 2007. CO2-forced climate and vegetation instability during Late Paleozoic deglaciation. Science 315:8791.CrossRefGoogle ScholarPubMed
Norell, M. 1992. Taxic origin and temporal diversity: the effect of phylogeny. Pp98118inNovacek, M. and Wheeler, Q., eds. Extinction and phylogeny. Columbia University Press, New York.Google Scholar
Olson, E. C. 1962. Late Permian terrestrial vertebrates, USA and USSR. Transactions of the American Philosophical Society 53:1224.CrossRefGoogle Scholar
Olson, E. C. 1966. Community evolution and the origin of mammals. Ecology 47:291302.CrossRefGoogle Scholar
Olson, E. C. 1974. On the source of therapsids. Annals of the South African Museum 64:2746.Google Scholar
Olson, E. C., and Beerbower, J. R. 1953. The San Angelo Formation, Permian of Texas, and its vertebrates. Journal of Geology 61:389423.CrossRefGoogle Scholar
Pisani, D., Yates, A. M., Langer, M. C., and Benton, M. J. 2002. A genus-level supertree of the Dinosauria. Proceedings of the Royal Society of London B 269:915921.CrossRefGoogle ScholarPubMed
R Development Core Team 2012. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.Google Scholar
Ragan, M. A. 1992. Phylogenetic inference based on matrix representation of trees. Molecular Phylogenetic Evolution 1:5358.CrossRefGoogle ScholarPubMed
Raup, D. M. 1975. Taxonomic diversity estimates under rarefaction. Paleobiology 1:333342.CrossRefGoogle Scholar
Raup, D. M. 1991. The future of analytical paleobiology. InGilinsky, L. and Signor, P. W., eds. Analytical paleobiology. Short Courses in Paleontology 4:207216. Paleontological Society, Knoxville, Tenn.CrossRefGoogle Scholar
Rees, P. M., Ziegler, A. M., Gibbs, M. T., Kutzbach, J. E., Behling, P. J., and Rowley, D. B. 2002. Permian phytogeographic patterns and climate data/model comparisons. Journal of Geology 110:131.CrossRefGoogle Scholar
Reisz, R. R. 1972. Pelycosaurian reptiles from the Middle Pennsylvanian of North America. Bulletin of the Museum of Comparative Zoology 114:2760.Google Scholar
Reisz, R. R. 1986. Pelycosauria. Gustav Fischer, Stuttgart.Google Scholar
Reisz, R. R. 2005. Oromycter, a new caseid from the Lower Permian of Oklahoma. Journal of Vertebrate Paleontology 25:905910.CrossRefGoogle Scholar
Reisz, R. R., and Dilkes, D. W. 2003. Archaeovenantor hamiltonensis, a new varanopid (Synapsida: Eupelycosauria) from the upper Carboniferous of Kansas. Canadian Journal of Earth Sciences 40:667678.CrossRefGoogle Scholar
Reisz, R. R., and Laurin, M. 2001. The reptile Macroleter: first vertebrate evidence for correlation of Upper Permian continental strata of North America and Russia. Geological Society of America Bulletin 113:12291233.2.0.CO;2>CrossRefGoogle Scholar
Reisz, R. R., and Laurin, M. 2004. A reevaluation of the enigmatic Permian synapsid Watongia and of its stratigraphic significance. Canadian Journal of Earth Sciences 41:377386.CrossRefGoogle Scholar
Reisz, R. R. and Modesto, S. 2007. Heleosaurus scholtzi from the Permian of South Africa: varanopid synapsid, not a diapsid reptile. Journal of Vertebrate Paleontology 27:734739.CrossRefGoogle Scholar
Reisz, R. R., Godfrey, S. J., and Scott, D. 2009. Eothyris and Oedaleops: do these early Permian synapsids from Texas and New Mexico form a clade? Journal of Vertebrate Paleontology 29:3947.CrossRefGoogle Scholar
Reisz, R. R., Laurin, M., and Marjanović, D. 2010. Apsisaurus witteri from the Lower Permian of Texas: yet another small varanopid synapsid, not a diapsid. Journal of Vertebrate Paleontology 30:16281631.CrossRefGoogle Scholar
Reisz, R. R., Maddin, H. C., Fröbisch, J., and Falconnet, J. 2011. A new large caseid (Synapsida, Caseasauria) from the Permian of Rodey (France), including a reappraisal of “Casearutena Sigogneau-Russell and Russell, 1974. Geodiversitas 33:227246.CrossRefGoogle Scholar
Rolando, J. P., Doubinger, J., Bourges, P., and Legrand, X. 1988. Identification de l'Autunien supérieur du Saxonien et du Thuringien inférieur dans le bassin de Saint-Affrique (Aveyron, France). Corrélations séquentielles et chronostratigraphiques avec les basins deLodève (Hérault) et de Rodez (Aveyron). Comptes Rendus de l'Académie des Sciences de Paris, série 2, 307:14591464.Google Scholar
Romer, A. S. 1937. New genera and species of pelycosaurian reptiles. Proceedings of the New England Zoological Club 16:8996.Google Scholar
Romer, A. S. 1945. The late Carboniferous vertebrate fauna of Kounva (Bohemia) compared with that of the Texas Redbeds. American Journal of Science 243:417442.CrossRefGoogle Scholar
Romer, A. S., and Price, L. I. 1940. Review of the Pelycosauria. Geological Society of America Special Paper 28.CrossRefGoogle Scholar
Rubidge, B. S., Erwin, D. H., Ramezani, J., Bowring, S. A., and de Klerk, W. J. 2013. High-precision temporal calibration of Late Permian vertebrate biostratigraphy: U-Pb zircon constraints from the Karoo Supergroup. Geology 41:363366.CrossRefGoogle Scholar
Ruta, M., and Benton, M. J. 2008. Calibrated diversity, tree topology and the mother of all mass extinctions: the lesson of temnospondyles. Palaeontology 51:12611288.CrossRefGoogle Scholar
Ruta, M., Jeffery, J. E., and Coates, M. I. 2003. A supertree of early tetrapods. Proceedings of the Royal Society of London B 270:25072516.CrossRefGoogle ScholarPubMed
Ruta, M., Pisani, D., Lloyd, G. T., and Benton, M. J. 2007. A supertree of Temnospondyli: cladogenetic patterns in the most species-rich group of early tetrapods. Proceedings of the Royal Society of London B 274:30873095.Google ScholarPubMed
Ruta, M., Cisneros, J. C., Liebrecht, T., Tsuji, L. A., and Müller, J. 2011. Amniotes through major biological crises: faunal turnover among parareptiles and the end-Permian mass extinction. Palaeontology 54:11171137.CrossRefGoogle Scholar
Sahney, S., and Benton, M. J. 2008. Recovery from the most profound mass extinction of all time. Proceedings of the Royal Society of London B 275:759765.Google ScholarPubMed
Sahney, S., Benton, M. J., and Falcon-Lang, H. J. 2010. Rainforest collapse triggered Carboniferous tetrapod diversification in Euramerica. Geology 38:10791082.CrossRefGoogle Scholar
Salamin, N., Hodkinson, T. R., and Savolainen, V. 2002. Building supertrees: an empirical assessment using the grass family (Poaceae). Systematic Biology 51:134150.CrossRefGoogle ScholarPubMed
Sidor, C. A. 2003. Evolutionary trends and the origin of the mammalian lower jaw. Paleobiology 29:605640.2.0.CO;2>CrossRefGoogle Scholar
Sidor, C. A., and Hopson, J. A. 1995. The taxonomic status of the Upper Permian eotheriodont therapsids of the San Angelo Formation (Guadalupian), Texas. Journal of Vertebrate Paleontology 15:53A.Google Scholar
Sidor, C. A., and Smith, R. M. H. 2004. A new galesaurid (Therapsida: Cynodontia) from the lower Triassic of South Africa. Palaeontology 47:535556.CrossRefGoogle Scholar
Sidor, C. A., O'Keefe, R. O., Damiani, R., Steyer, J. S., Smith, R. M. H., Larsson, H. C. E., Sereno, P. C., Ide, O., and Maga, A. 2005. Permian tetrapods from the Sahara show climate-controlled endemism in Pangaea. Nature 434:886889.CrossRefGoogle ScholarPubMed
Signor, P. W., and Lipps, J. H. 1982. Sampling bias, gradual extinction patterns and catastrophes in the fossil record. InSilver, L. T. and Schultz, P. H., eds. Geological implications of impacts of large asteroids and comets on Earth. Geological Society of America Special Paper 190:291296.CrossRefGoogle Scholar
Sigogneau-Russell, D., and Russell, D. E. 1974. Etude du premier caséidé (Reptilia: Pelycosauria) d'Europe occidental. Bulletin du Muséum National d'Histoire Naturelle 230:145216.Google Scholar
Smith, A. B. 2001. Large scale heterogeneity of the fossil record: implications for Phanerozoic biodiversity studies. Proceedings of the Royal Society of London B 356:351367.CrossRefGoogle ScholarPubMed
Smith, A. B., and McGowan, A. J. 2007. The shape of the Phanerozoic palaeodiversity curve: how much can be predicted from the sedimentary rock record of Western Europe. Palaeontology 50:765774.CrossRefGoogle Scholar
Smith, A. B., and McGowan, A. J. 2008. Temporal patterns of barren intervals in the Phanerozoic. Paleobiology 34:155161.CrossRefGoogle Scholar
Sues, H. D., and Reisz, R. R. 1998. Origins and early evolution of herbivory in tetrapods. Trends in Ecology and Evolution 13:141145.CrossRefGoogle ScholarPubMed
Tabor, N. J., and Poulsen, C. J. 2008. Palaeoclimate across the Late Pennsylvanian–Early Permian tropical palaeolatitudes: a review of climate indicators, their distribution and relation to palaeophysiographic climate factors. Palaeogeography, Palaeoclimatology, Palaeoecology 268:293310.CrossRefGoogle Scholar
Upchurch, P., and Barrett, P. M. 2005. Phylogenetic and taxic perspectives on sauropod diversity. Pp. 104124inRogers, K. C. and Wilson, J. A., eds. The sauropods: evolution and palaeobiology. University of California Press, Berkeley.Google Scholar
Upchurch, P., Mannion, P. D., Benson, R. B. J., Butler, R. J., and Carrano, W. T. 2011. Geological and anthropogenic controls on the sampling of the terrestrial fossil record: a case study from the Dinosauria. InMcGowan, A. J. and Smith, A. B., eds. Comparing the geological and fossil records: implications for biodiversity studies. Geological Society of London Special Publication 358:209240.CrossRefGoogle Scholar
Wall, P., Ivany, L., and Wilkinson, B. 2009. Revisiting Raup: exploring the influence of outcrop area on diversity in the light of modern sample standardization techniques. Paleobiology 35:146167.CrossRefGoogle Scholar
Williston, S. W. 1915. New genera of Permian reptiles. American Journal of Science 39:575579.CrossRefGoogle Scholar
Woodhead, J., Reisz, R. R., Fox, D., Drysdale, R., Hellstrom, J., Maas, R., Cheng, H., and Edwards, R. L. 2010. Speleothem climate records from deep time? Exploring the potential with an example from the Permian. Geology 38:455458.CrossRefGoogle Scholar