Skip to main content Accessibility help
Hostname: page-component-768ffcd9cc-w9xp6 Total loading time: 0.463 Render date: 2022-12-03T02:04:13.468Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Article contents

General models of ecological diversification. II. Simulations and empirical applications

Published online by Cambridge University Press:  28 March 2016

Philip M. Novack-Gottshall*
Department of Biological Sciences, Benedictine University, Lisle, Illinois 60532, U.S.A. E-mail:


Models of functional ecospace diversification within life-habit frameworks (functional-trait spaces) are increasingly used across community ecology, functional ecology, and paleoecology. In general, these models can be represented by four basic processes, three that have driven causes and one that occurs through a passive process. The driven models include redundancy (caused by forms of functional canalization), partitioning (specialization), and expansion (divergent novelty), but they also share important dynamical similarities with the passive neutral model. In this second of two companion articles, Monte Carlo simulations of these models are used to illustrate their basic statistical dynamics across a range of data structures and implementations. Ecospace frameworks with greater numbers of characters (functional traits) and ordered (multistate) character types provide more distinct dynamics and greater ability to distinguish the models, but the general dynamics tend to be congruent across all implementations. Classification-tree methods are proposed as a powerful means to select among multiple candidate models when using multivariate data sets. Well-preserved Late Ordovician (type Cincinnatian) samples from the Kope and Waynesville formations are used to illustrate how these models can be inferred in empirical applications. Initial simulations overestimate the ecological disparity of actual assemblages, confirming that actual life habits are highly constrained. Modifications incorporating more realistic assumptions (such as weighting potential life habits according to actual frequencies and adding a parameter controlling the strength of each model’s rules) provide better correspondence to actual assemblages. Samples from both formations are best fit by partitioning (and to lesser extent redundancy) models, consistent with a role for local processes. When aggregated as an entire formation, the Kope Formation pool remains best fit by the partitioning model, whereas the entire Waynesville pool is better fit by the redundancy model, implying greater beta diversity within this unit. The ‘ecospace’ package is provided to implement the simulations and to calculate their dynamics using the R statistical language.

Copyright © 2016 The Paleontological Society. All rights reserved 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Literature Cited

Aberhan, M., and Kiessling, W.. 2015. Persistent ecological shifts in marine molluscan assemblages across the end-Cretaceous mass extinction. Proceedings of the National Academy of Sciences USA 112:72077212.CrossRefGoogle ScholarPubMed
Ackerly, D. D., and Cornwell, W. K.. 2007. A trait-based approach to community assembly: partitioning of species trait values into within- and among-community components. Ecology Letters 10:135145.CrossRefGoogle ScholarPubMed
Alroy, J., Aberhan, M., Bottjer, D. J., Foote, M., Fursich, F. T., Harries, P. J., Hendy, A. J. W., Holland, S. M., Ivany, L. C., Kiessling, W., Kosnik, M. A., Marshall, C. R., McGowan, A. J., Miller, A. I., Olszewski, T. D., Patzkowsky, M. E., Peters, S. E., Villier, L., Wagner, P. J., Bonuso, N., Borkow, P. S., Brenneis, B., Clapham, M. E., Fall, L. M., Ferguson, C. A., Hanson, V. L., Krug, A. Z., Layou, K. M., Leckey, E. H., Nürnberg, S., Powers, C. M., Sessa, J. A., Simpson, C., Tomašových, A., and Visaggi, C. C.. 2008. Phanerozoic trends in the global diversity of marine invertebrates. Science 321:97100.CrossRefGoogle ScholarPubMed
Anderson, D. R., Burnham, K. P., and Thompson, W. L.. 2000. Null hypothesis testing: problems, prevalence, and an alternative. Journal of Wildlife Management 64:912923.CrossRefGoogle Scholar
Anderson, M. J., Ellingsen, K. E., and McArdle, B. H.. 2006. Multivariate dispersion as a measure of beta diversity. Ecology Letters 9:683693.CrossRefGoogle ScholarPubMed
Aucoin, C. D., Dattilo, B. F., Brett, C. E., and Cooper, D. L.. 2015. Preliminary report on the Oldenburg “butter shale” in the Upper Ordovician (Katian; Richmondian) Waynesville Formation, USA. Estonian Journal of Earth Sciences 64:37.CrossRefGoogle Scholar
Ausich, W. I., and Bottjer, D. J.. 1982. Tiering in suspension feeding communities on soft substrata throughout the Phanerozoic. Science 216:173174.CrossRefGoogle ScholarPubMed
Bambach, R. K. 1977. Species richness in marine benthic habitats through the Phanerozoic. Paleobiology 3:152167.CrossRefGoogle Scholar
Bambach, R. K 1983. Ecospace utilization and guilds in marine communities through the Phanerozoic. Pp. 719746 in M. J. S. Tevesz and P. L. McCall, eds. Biotic interactions in recent and fossil benthic communities. Plenum, New York.CrossRefGoogle Scholar
Bambach, R. K. 1985. Classes and adaptive variety: the ecology of diversification in marine faunas through the Phanerozoic. Pp. 191253 in J. W. Valentine, ed. Phanerozoic diversity patterns: profiles in macroevolution. Princeton University Press, Princeton, N.J.Google Scholar
Bambach, R. K., Bush, A. M., and Erwin, D. H.. 2007. Autecology and the filling of ecospace: key metazoan radiations. Palaeontology 50:122.CrossRefGoogle Scholar
Beaumont, M. A. 2010. Approximate Bayesian computation in evolution and ecology. Annual Review of Ecology, Evolution, and Systematics 41:379406.CrossRefGoogle Scholar
Bottjer, D. J., and Ausich, W. I.. 1986. Phanerozoic development of tiering in soft substrata suspension-feeding communities. Paleobiology 12:400420.CrossRefGoogle Scholar
Boyer, A. G. 2010. Consistent ecological selectivity through time in Pacific Island avian extinctions. Conservation Biology 24:511519.CrossRefGoogle ScholarPubMed
Brandt, D. S. 1996. Epizoans on Flexicalymene (Trilobita) and implications for trilobite paleoecology. Journal of Paleontology 70:442449.CrossRefGoogle Scholar
Brandt, D. S., Meyer, D. L., and Lask, P. B.. 1995. Isotelus (Trilobita) “hunting burrow” from Upper Ordovician strata, Ohio. Journal of Paleontology 69:10791083.CrossRefGoogle Scholar
Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J.. 1984. Classification and regression trees. Wadsworth and Brooks, Monterey, Calif.Google Scholar
Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J.. 1993. Classification and regression trees. Chapman and Hall/CRC Press, New York, N.Y.Google Scholar
Browne, R. G. 1964. The coral horizons and stratigraphy of the Upper Richmond Group in Kentucky West of the Cincinnati Arch. Journal of Paleontology 38:385392.Google Scholar
Burnham, K. P., and Anderson, D. R.. 2002. Model selection and multi-model inference: a practical information-theoretic approach. Springer, New York.Google Scholar
Bush, A. M., and Bambach, R. K. 2004. Did alpha diversity increase during the Phanerozoic? Lifting the veils of taphonomic, latitudinal, and environmental biases. Journal of Geology 112:625642.CrossRefGoogle Scholar
Bush, A. M., and Bambach, R. K. 2011. Paleoecologic megatrends in marine Metazoa. Annual Review of Earth and Planetary Sciences 39:241269.CrossRefGoogle Scholar
Bush, A. M., Bambach, R. K., and Daley, G. M.. 2007. Changes in theoretical ecospace utilization in marine fossil assemblages between the mid-Paleozoic and late Cenozoic. Paleobiology 33:7697.CrossRefGoogle Scholar
Bush, A. M., Bambach, R. K., and Erwin, D. H.. 2011. Ecospace utilization during the Ediacaran radiation and the Cambrian eco-explosion. Pp. 111134 in M. Laflamme, J. D. Schiffbauer, and S. Q. Dornbos, eds. Quantifying the evolution of early life: numerical approaches to the evaluation of fossils and ancient ecosystems. Springer, New York.CrossRefGoogle Scholar
Bush, A. M., and Novack-Gottshall, P. M.. 2012. Modelling the ecological-functional diversification of marine Metazoa on geological time scales. Biology Letters 8:151155.CrossRefGoogle ScholarPubMed
Bush, A. M., and Pruss, S. B.. 2013. Theoretical ecospace for ecosystem paleobiology: energy, nutrients, biominerals, and macroevolution. In A. M. Bush, S. B. Pruss, and J. L. Payne, eds. Ecosystem paleobiology and geobiology. Short Courses in Paleontology 19:120. Paleontological Society and Paleontological Research Institute, Ithaca, N.Y.Google Scholar
Ciampaglio, C. N., Kemp, M., and McShea, D. W.. 2001. Detecting changes in morphospace occupation patterns in the fossil record: characterization and analysis of measures of disparity. Paleobiology 27:695715.2.0.CO;2>CrossRefGoogle Scholar
Codron, D., Carbone, C., and Clauss, M.. 2013. Ecological interactions in dinosaur communities: influences of small offspring and complex ontogenetic life histories. PLoS ONE 8:e77110.CrossRefGoogle ScholarPubMed
Cornell, H. V. 1999. Unsaturation and regional influences on species richness in ecological communities: a review of the evidence. Ecoscience 6:303315.CrossRefGoogle Scholar
Cornell, H. V., and Harrison, S. P.. 2014. What are species pools and when are they important? Annual review of Ecology, Evolution, and Systematics 45:4567.CrossRefGoogle Scholar
Cutler, D. R., Edwards, T. C., Beard, K. H., Cutler, A., Hess, K. T., Gibson, J., and Lawler, J. J.. 2007. Random forests for classification in ecology. Ecology 88:27832792.CrossRefGoogle ScholarPubMed
Dalvé, E. 1948. The fossil fauna of the Ordovician in the Cincinnati region. University Museum, Department of Geology and Geography, University of Cincinnati, Cincinnati, Ohio.Google Scholar
De’ath, G. 2002. Multivariate regression trees: a new technique for modeling species-environment relationships. Ecology 83:11051117.Google Scholar
De’ath, G., and Fabricius, K. E.. 2000. Classification and regression trees: a powerful yet simple technique for ecological data analysis. Ecology 81:31783192.CrossRefGoogle Scholar
de Bello, F. 2012. The quest for trait convergence and divergence in community assembly: are null-models the magic wand? Global Ecology and Biogeography 21:312317.CrossRefGoogle Scholar
Deline, B. 2009. The effects of rarity and abundance distributions on measurements of local morphological disparity. Paleobiology 35:175189.CrossRefGoogle Scholar
Deline, B., Ausich, W. I., and Brett, C. E.. 2012. Comparing taxonomic and geographic scales in the morphologic disparity of Ordovician through Early Silurian Laurentian crinoids. Paleobiology 38:538553.CrossRefGoogle Scholar
Dick, D. G., and Maxwell, E. E.. 2015. The evolution and extinction of the ichthyosaurs from the perspective of quantitative ecospace modelling. Biology Letters 11:20150339.CrossRefGoogle ScholarPubMed
Dineen, A. A., Fraiser, M. L., and Sheehan, P. M.. 2014. Quantifying functional diversity in pre- and post-extinction paleocommunities: a test of ecological restructuring after the end-Permian mass extinction. Earth-Science Reviews 136:339349.CrossRefGoogle Scholar
Dineen, A. A., Fraiser, M. L., and Tong, J.. 2015. Low functional evenness in a post-extinction Anisian (Middle Triassic) paleocommunity: a case study of the Leidapo Member (Qingyan Formation), south China. Global and Planetary Change 133:7986.CrossRefGoogle Scholar
Dunne, J. A., Williams, R. J., Martinez, N. D., Wood, R. A., and Erwin, D. H.. 2008. Compilation and network analyses of Cambrian food webs. PLoS Biol 6:e102.CrossRefGoogle ScholarPubMed
Durst, P. A. P., and Roth, V. L.. 2012. Classification tree methods provide a multifactorial approach to predicting insular body size evolution in rodents. American Naturalist 179:545553.CrossRefGoogle ScholarPubMed
English, A. M., and Babcock, L. E.. 2007. Feeding behaviour of two Ordovician trilobites inferred from trace fossils and non-biomineralised anatomy, Ohio and Kentucky, USA. Memoirs of the Association of Australasian Palaeontologists 34(2007):537.Google Scholar
Fargione, J., Brown, C. S., and Tilman, D.. 2003. Community assembly and invasion: an experimental test of neutral versus niche processes. Proceedings of the National Academy of Sciences USA 100:89168920.CrossRefGoogle ScholarPubMed
Feldmann, R. M. 1996. Fossils of Ohio. Department of Natural Resources. State of Ohio: Geological Survey Bulletin. 70.Google Scholar
Finnegan, S., , N. A. Heim, Peters, S. E., and Fischer, W. W.. 2012. Climate change and the selective signature of the Late Ordovician mass extinction. Proceedings of the National Academy of Sciences USA 109:68296834.CrossRefGoogle ScholarPubMed
Finnegan, S., Anderson, S. C., Harnik, P. G., Simpson, C., Tittensor, D. P., Byrnes, J. E., Finkel, Z. V., Lindberg, D. R., Liow, L. H., Lockwood, R., Lotze, H. K., McClain, C. R., McGuire, J. L., O’Dea, A., and Pandolfi, J. M.. 2015. Paleontological baselines for evaluating extinction risk in the modern oceans. Science 348:567570.CrossRefGoogle ScholarPubMed
Fontana, S., Petchey, O. L., and Pomati, F.. 2015. Individual-level trait diversity concepts and indices to comprehensively describe community change in multidimensional trait space. Functional Ecology 123:13911399.Google Scholar
Foote, M.. 1993. Discordance and concordance between morphological and taxonomic diversity. Paleobiology 19:185204.CrossRefGoogle Scholar
Foote, M. 1994. Morphological disparity in Ordovician–Devonian crinoids and the early saturation of morphological space. Paleobiology 20:320344.CrossRefGoogle Scholar
Freeman, R. L., Dattilo, B. F., Morse, A., Blair, M., Felton, S., and Pojeta, J.. 2013. The “curse of Rafinesquina”: negative taphonomic feedback exerted by strophomenid shells on storm-buried lingulids in the Cincinnatian Series (Katian, Ordovician) of Ohio. Palaios 28:359372.CrossRefGoogle Scholar
Frey, R. C. 1987a. The occurrence of pelecypods in Early Paleozoic epeiric-sea environments: Late Ordovician of the Cincinnati, Ohio area. Palaios 2:323.CrossRefGoogle Scholar
Frey, R. C. 1987b. The paleoecology of a Late Ordovician shale unit from southwest Ohio and southeastern Indiana. Journal of Paleontology 61:242267.CrossRefGoogle Scholar
Frey, R. C. 1988. Paleoecology of Treptoceras duseri (Michelinoceratida, Proteoceratidae) from Late Ordovician of southwestern Ohio. New Mexico Bureau of Mines and Mineral Resources Memoir 44:79101.Google Scholar
Frey, R. C. 1989. Paleoecology of a well-preserved nautiloid assemblage from a Late Ordovician shale unit, southwestern Ohio. Journal of Paleontology 63:604620.CrossRefGoogle Scholar
Gaines, R. R., Droser, M. L., and Hughes, N. C.. 1999. The ichnological record in Ordovician mudstones: examples from the Cincinnatian strata of Ohio and Kentucky (USA). Acta Universitatis Carolinae, Geologica 43:163166.Google Scholar
Gerhold, P., Cahill, J. F., Winter, M., Bartish, I. V., and Prinzing, A.. 2015. Phylogenetic patterns are not proxies of community assembly mechanisms (they are far better). Functional Ecology 29:600614.CrossRefGoogle Scholar
Gerisch, M. 2014. Non-random patterns of functional redundancy revealed in ground beetle communities facing an extreme flood event. Functional Ecology 28:15041512.CrossRefGoogle Scholar
Gower, J. C. 1971. A general coefficient of similarity and some of its properties. Biometrics 27:857871.CrossRefGoogle Scholar
Grueber, C. E., Nakagawa, S., Laws, R. J., and Jamieson, I. G.. 2011. Multimodel inference in ecology and evolution: challenges and solutions. Journal of Evolutionary Biology 24:699711.CrossRefGoogle ScholarPubMed
Guillemot, N., Kulbicki, M., Chabanet, P., and Vigliola, L.. 2011. Functional redundancy patterns reveal non-random assembly rules in a species-rich marine assemblage. PLoS ONE 6:e26735.CrossRefGoogle Scholar
Hatton, I. A., McCann, K. S., Fryxell, J. M., Davies, T. J., Smerlak, M., Sinclair, A. R. E., and Loreau, M.. 2015. The predator-prey power law: Biomass scaling across terrestrial and aquatic biomes. Science 349:aac6284.CrossRefGoogle ScholarPubMed
Hautmann, M. 2014. Diversification and diversity partitioning. Paleobiology 40:162176.CrossRefGoogle Scholar
Heim, N. A., Knope, M. L., Schaal, E. K., Wang, S. C., and Payne, J. L.. 2015. Cope’s rule in the evolution of marine animals. Science 347:867870.CrossRefGoogle ScholarPubMed
Holland, S. M. 1993. Sequence stratigraphy of a carbonate-clastic ramp: the Cincinnatian Series (Upper Ordovician) in its type area. Geological Society of America Bulletin 105:306322.2.3.CO;2>CrossRefGoogle Scholar
Holland, S. M. 2010. Additive diversity partitioning in palaeobiology: revisiting Sepkoski’s question. Palaeontology 53:12371254.CrossRefGoogle Scholar
Holland, S. M., and Patzkowsky, M. E.. 2007. Gradient ecology of a biotic invasion: biofacies of the type Cincinnatian series (Upper Ordovician), Cincinnati, Ohio region, USA. Palaios 22:392407.CrossRefGoogle Scholar
Holland, S. M., and Patzkowsky, M. E.. 2009. The Richmondian invasion: understanding the faunal response to climate change through stratigraphic paleobiology. Type Cincinnatian (Upper Ordovician) outcrops, northern Kentucky, southwestern Ohio, and southeastern Indiana. Pp. 1–67 in The Richmondian invasion in the type Cincinnatian Series. Fieldtrip guidebook, Ninth North American Paleontological Convention. Cincinnati, OH.Google Scholar
Holland, S. M., Miller, A. I., Dattillo, B. F., and Meyer, D. L.. 2001. The detection and importance of subtle biofacies in lithologically uniform strata: the Upper Ordovician Kope Formation of the Cincinnati, Ohio region. Palaios 16:205217.2.0.CO;2>CrossRefGoogle Scholar
Hubbell, S. P. 2001. The Unified Theory of Biodiversity and Biogeography. Princeton University Press, Princeton, N.J.Google Scholar
Hughes, N. C, and Cooper, D. L.. 1999. Paleobiologic and taphonomic aspects of the “Granulosa” trilobite cluster, Kope Formation (Upper Ordovician, Cincinnati region). Journal of Paleontology 73:306319.CrossRefGoogle Scholar
Huntley, J. W., and Scarponi, D.. 2012. Evolutionary and ecological implications of trematode parasitism of modern and fossil northern Adriatic bivalves. Paleobiology 38:4051.CrossRefGoogle Scholar
Johnson, J. B., and Omland, K. S.. 2004. Model selection in ecology and evolution. Trends in Ecology and Evolution 19:101108.CrossRefGoogle ScholarPubMed
Kinzig, A. P., Levin, S. A., Dushoff, J., and Pacala, S.. 1999. Limiting similarity, species packing, and system stability for hierarchical competition-colonization models. American Naturalist 153:371383.Google ScholarPubMed
Knoll, A. H., and Bambach, R. K.. 2000. Directionality in the history of life: diffusion from the left wall or repeated scaling of the right? Paleobiology 26(Suppl. to No. 4), 114.CrossRefGoogle Scholar
Knope, M. L., Heim, N. A., Frishkoff, L. O., and Payne, J. L.. 2015. Limited role of functional differentiation in early diversification of animals. Nature Communications 6:6455.CrossRefGoogle ScholarPubMed
Kowalewski, M., and Novack-Gottshall, P.. 2010. Resampling methods in paleontology. In J. Alroy and G. Hunt, eds. Quantitative methods in paleobiology. Short Courses in Paleontology 16:1954. Paleontological Society and Paleontological Research Institute, Ithaca, N.Y.Google Scholar
Kowalewski, M., Kiessling, W., Aberhan, M., Fürsich, F. T., Scarponi, D., Barbour Wood, S. L., and Hoffmeister, A. P.. 2006. Ecological, taxonomic, and taphonomic components of the post-Paleozoic increase in sample-level species diversity of marine benthos. Paleobiology 32:533561.CrossRefGoogle Scholar
Laflamme, M., Xiao, S., and Kowalewski, M.. 2009. Osmotrophy in modular Ediacara organisms. Proceedings of the National Academy of Sciences USA 106:1443814443.CrossRefGoogle ScholarPubMed
Laflamme, M., Darroch, S. A. F., Tweedt, S. M., Peterson, K. J., and Erwin, D. H.. 2013. The end of the Ediacara biota: extinction, biotic replacement, or Cheshire Cat? Gondwana Research 23:558573.CrossRefGoogle Scholar
Laliberté, E., and Legendre, P.. 2010. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91:299305.CrossRefGoogle ScholarPubMed
Laliberté, E., and Shipley, B.. 2014. FD: measuring functional diversity from multiple traits, and other tools for functional ecology, Version 1.0-12.Google Scholar
Legendre, P., and Anderson, M. J.. 1999. Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments. Ecological Monographs 69:124.CrossRefGoogle Scholar
Leighton, L. R. 1998. Constraining functional hypotheses: controls on the morphology of the concavo-convex brachiopod Rafinesquina. Lethaia 31:293307.CrossRefGoogle Scholar
Lescinsky, H. L. 1995. The life orientation of concavo-convex brachiopods: overturning the paradigm. Paleobiology 21:520551.CrossRefGoogle Scholar
Maire, E., Grenouillet, G., Brosse, S., and Villéger, S.. 2015. How many dimensions are needed to accurately assess functional diversity? A pragmatic approach for assessing the quality of functional spaces. Global Ecology and Biogeography 24:728740.CrossRefGoogle Scholar
Mason, N. W. H., Mouillot, D., Lee, W. G., and Wilson, J. B.. 2005. Functional richness, functional evenness and functional divergence: the primary components of functional diversity. Oikos 111:112118.CrossRefGoogle Scholar
McShea, D. W. 1994. Mechanisms of large-scale evolutionary trends. Evolution 48:17471763.CrossRefGoogle ScholarPubMed
Meyer, D. L., Miller, A. I., Holland, S. M., and Dattilo, B. F.. 2002. Crinoid distribution and feeding morphology through a depositional sequence: Kope and Fairview Formations, Upper Ordovician, Cincinnati Arch region. Journal of Paleontology 76:725732.CrossRefGoogle Scholar
Miller, J. H., Behrensmeyer, A. K., Du, A., Lyons, S. K., Patterson, D., Tóth, A., Villaseñor, A., Kanga, E., and Reed, D.. 2014. Ecological fidelity of functional traits based on species presence-absence in a modern mammalian bone assemblage (Amboseli, Kenya). Paleobiology 40:560583.CrossRefGoogle Scholar
Mitchell, J. S., and Makovicky, P. J.. 2014. Low ecological disparity in Early Cretaceous birds. Proceedings of the Royal Society B 281:20140608.CrossRefGoogle ScholarPubMed
Mitchell, J. S., Roopnarine, P. D., and Angielczyk, K. D.. 2012. Late Cretaceous restructuring of terrestrial communities facilitated the end-Cretaceous mass extinction in North America. Proceedings of the National Academy of Sciences USA 109:1885718861.CrossRefGoogle ScholarPubMed
Mondal, S., and Harries, P. J.. 2015. Phanerozoic trends in ecospace utilization: the bivalve perspective. Earth-Science Reviews 152:106118.CrossRefGoogle Scholar
Morris, R. W., and Felton, S. H.. 2003. Paleoecologic associations and secondary tiering of Cornulites on crinoids and bivalves in the Upper Ordovician (Cincinnatian) of southwestern Ohio, southeastern Indiana, and northern Kentucky. Palaios 18:546558.2.0.CO;2>CrossRefGoogle Scholar
Mouchet, M. A., Villéger, S., Mason, N. W. H., and Mouillot, D.. 2010. Functional diversity measures: an overview of their redundancy and their ability to discriminate community assembly rules. Functional Ecology 24:867876.CrossRefGoogle Scholar
Mouillot, D., Graham, N. A. J., Villéger, S., Mason, N. W. H., and Bellwood, D. R.. 2013. A functional approach reveals community responses to disturbances. Trends in Ecology and Evolution 28:167177.CrossRefGoogle ScholarPubMed
Novack-Gottshall, P. 2015. ecospace: simulating community assembly and ecological diversification using ecospace frameworks, Version 1.0.1. Scholar
Novack-Gottshall, P. M. 2007. Using a theoretical ecospace to quantify the ecological diversity of Paleozoic and modern marine biotas. Paleobiology 33:273294.CrossRefGoogle Scholar
Novack-Gottshall, P. M. 2008a. Ecosystem-wide body size trends in Cambrian–Devonian marine invertebrate lineages. Paleobiology 34:210228.CrossRefGoogle Scholar
Novack-Gottshall, P. M. 2008b. Using simple body-size metrics to estimate fossil body volume: empirical validation using diverse Paleozoic invertebrates. Palaios 23:163173.CrossRefGoogle Scholar
Novack-Gottshall, P. M. 2010. Performance of functional diversity metrics applied as measures of disparity. Geological Society of America Abstracts with Programs 42:A140.Google Scholar
Novack-Gottshall, P. M. 2016. General models of ecological diversification. I. Conceptual synthesis. Paleobiology 42 [this issue].Google Scholar
Novack-Gottshall, P. M., and Miller, A. I.. 2003. Comparative taxonomic richness and abundance of Late Ordovician gastropods and bivalves in mollusc-rich strata of the Cincinnati Arch. Palaios 18:559571.2.0.CO;2>CrossRefGoogle Scholar
O’Brien, L. J., and Caron, J.-B.. 2015. Paleocommunity analysis of the Burgess Shale Tulip Beds, Mount Stephen, British Columbia: comparison with the Walcott Quarry and implications for community variation in the Burgess Shale. Paleobiology 42:2753.CrossRefGoogle Scholar
Pakeman, R. J. 2014. Functional trait metrics are sensitive to the completeness of the species’ trait data? Methods in Ecology and Evolution 5:915.CrossRefGoogle Scholar
Patzkowsky, M. E., and Holland, S. M.. 2003. Lack of community saturation at the beginning of the Paleozoic plateau: the dominance of regional over local processes. Paleobiology 29:545560.2.0.CO;2>CrossRefGoogle Scholar
Patzkowsky, M. E., and Holland, S. M.. 2007. Diversity partitioning of a Late Ordovician marine biotic invasion: controls on diversity in regional ecosystems. Paleobiology 33:295309.CrossRefGoogle Scholar
Pojeta, J. Jr. 1971. Review of Ordovician pelecypods. United States Geological Survey Professional Paper 695.Google Scholar
Powell, M. G., and Kowalewski, M.. 2002. Increase in evenness and sampled alpha diversity through the Phanerozoic: comparison of early Paleozoic and Cenozoic marine fossil assemblages. Geology 30:331334.2.0.CO;2>CrossRefGoogle Scholar
Prasad, A., Iverson, L., and Liaw, A.. 2006. Newer classification and regression tree techniques: bagging and random forests for ecological prediction. Ecosystems 9:181199.CrossRefGoogle Scholar
R Development Core Team. 2015. R: a language and environment for statistical computing, Version 3.2.0. R Foundation for Statistical Computing, Vienna, Austria.Google Scholar
Raup, D. M. 1966. Geometric analysis of shell coiling: general problems. Journal of Paleontology 40:11781190.Google Scholar
Richards, R. P. 1972. Autecology of Richmondian brachiopods (Late Ordovician of Indiana and Ohio). Journal of Paleontology 46:386405.Google Scholar
Ros, S., Renzi, M. D., Damborenea, S. E., and Marquez-Aliaga, A.. 2012. Early Triassic–Early Jurassic bivalve diversity dynamics. Pp. 119. Treatise Online. University of Kansas, Lawrence, Kans.Google Scholar
Ros, S., De Renzi, M., Damborenea, S. E., and Márquez-Aliaga, A.. 2012. Part N (revised), vol. 1, chap. 25: Early Triassic–Early Jurassic bivalve diversity dynamics. Treatise Online 39:119.Google Scholar
Sandy, M. R. 1996. Oldest record of peduncular attachment of brachiopods to crinoid stems, Upper Ordovician, Ohio, U.S.A. Journal of Paleontology 70:532534.CrossRefGoogle Scholar
Schumacher, G. A., and Shrake, D. L.. 1997. Paleoecology and comparative taphonomy of an Isotelus (Trilobita) fossil lagerstätten from the Waynesville Formation (Upper Ordovician, Cincinnatian Series) of southwestern Ohio. Pp. 131161 in C. E. Brett and G. C. Baird, eds. Paleontological events: stratigraphic, ecological, and evolutionary implications. Columbia University Press, New York.Google Scholar
Seilacher, A. 1970. Arbeitskonzept zur Konstruktions-Morphologie. Lethaia 3:393396.CrossRefGoogle Scholar
Sepkoski, J. J. Jr. 1981. A factor analytic description of the Phanerozoic marine fossil record. Paleobiology 7:3653.CrossRefGoogle Scholar
Slater, G. J., Harmon, L. J., Wegmann, D., Joyce, P., Revell, L. J., and Alfaro, M. E.. 2012. Fitting models of continuous trait evolution to incompletely sampled comparative data using approximate Bayesian computation. Evolution 66:752762.CrossRefGoogle ScholarPubMed
Strobl, C., Boulesteix, A.-L., Zeileis, A., and Hothorn, T.. 2007. Bias in random forest variable importance measures: illustrations, sources and a solution. BMC Bioinformatics 8:25.CrossRefGoogle ScholarPubMed
Sullivan, M., Jones, M., Lee, D., Marsden, S., Fielding, A., and Young, E.. 2006. A comparison of predictive methods in extinction risk studies: contrasts and decision trees. Biodiversity and Conservation 15:19771991.CrossRefGoogle Scholar
Thomas, R. D. K., and Reif, W. E.. 1993. The skeleton space: a finite set of organic designs. Evolution 47:341360.CrossRefGoogle ScholarPubMed
Tomašových, A., and Kidwell, S. M.. 2010. Predicting the effects of increasing temporal scale on species composition, diversity, and rank-abundance distributions. Paleobiology 36:672695.CrossRefGoogle Scholar
Van Valen, L. 1974. Multivariate structural statistics in natural history. Journal of Theoretical Biology 45:235247.CrossRefGoogle ScholarPubMed
Van Valkenburgh, B. 1988. Trophic diversity in past and present guilds of large predatory mammals. Paleobiology 14:155173.CrossRefGoogle Scholar
Van Valkenburgh, B., and Molnar, R. E.. 2002. Dinosaurian and mammalian predators compared. Paleobiology 28:527543.Google Scholar
Vermeij, G. J. 1987. Evolution and escalation: an ecological history of life. Princeton University Press, N.J.Google Scholar
Vermeij, G. J. 2011. The energetics of modernization: the last one hundred million years of biotic evolution. Paleontological Research 15:5461.CrossRefGoogle Scholar
Vermeij, G. J. 2013. On escalation. Annual Review of Earth and Planetary Sciences 41:119.CrossRefGoogle Scholar
Villéger, S., Mason, N. W. H., and Mouillot, D.. 2008. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89:22902301.CrossRefGoogle ScholarPubMed
Villéger, S., Miranda, J. R., Hernández, D. F., and Mouillot, D.. 2010. Contrasting changes in taxonomic vs. functional diversity of tropical fish communities after habitat degradation. Ecological Applications 20:15121522.CrossRefGoogle ScholarPubMed
Villéger, S., Novack-Gottshall, P. M., and Mouillot, D.. 2011. The multidimensionality of the niche reveals functional diversity changes in benthic marine biotas across geological time. Ecology Letters 14:561568.CrossRefGoogle ScholarPubMed
Villier, L., and Eble, G. J.. 2009. Assessing the robustness of disparity estimates: the impact of morphometric scheme, temporal scale, and taxonomic level in spatangoid echinoids. Paleobiology 30:652665.2.0.CO;2>CrossRefGoogle Scholar
Vogt, R. J., Peres-Neto, P. R., and Beisner, B. E.. 2013. Using functional traits to investigate the determinants of crustacean zooplankton community structure. Oikos 122:17001709.CrossRefGoogle Scholar
Wills, M. A. 2001. Morphological disparity: a primer. Pp. 55–143 in J. M. Adrain, G. D. Edgecombe, and B. S. Lieberman, eds. Fossils, phylogeny, and form: an analytical approach. Kluwer Academic/Plenum, New York.Google Scholar
Xiao, S., and Laflamme, M.. 2009. On the eve of animal radiation: phylogeny, ecology and evolution of the Ediacara biota. Trends in Ecology and Evolution 24:3140.CrossRefGoogle ScholarPubMed
Zhang, Z., Augustin, M., and Payne, J. L.. 2015. Phanerozoic trends in brachiopod body size from synoptic data. Paleobiology 41:491501.CrossRefGoogle Scholar
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the or variations. ‘’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

General models of ecological diversification. II. Simulations and empirical applications
Available formats

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

General models of ecological diversification. II. Simulations and empirical applications
Available formats

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

General models of ecological diversification. II. Simulations and empirical applications
Available formats

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *