Hostname: page-component-797576ffbb-xg4rj Total loading time: 0 Render date: 2023-12-08T09:08:34.141Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "useRatesEcommerce": true } hasContentIssue false

Grasping the shape of belemnoid arm hooks—a quantitative approach

Published online by Cambridge University Press:  08 February 2017

René Hoffmann
Ruhr Universität Bochum, Institute for Geology, Mineralogy, and Geophysics, Branch Paleontology, Universitätsstrasse 150, 44801 Bochum, Germany. E-mail:
Manuel F. G. Weinkauf
Université de Genève, Department of Earth Sciences, 13 Rue desMaraîchers, 1205 Genève, Switzerland, and Center for Marine Environmental Sciences (MARUM), University Bremen, Leobener Straße, 28359Bremen, Germany. E-mail:
Dirk Fuchs
Earth and Planetary System Science, Department of Natural History Sciences, Hokkaido University, Sapporo, Japan. E-mail:


Chitinous arm hooks (onychites) of belemnoid coleoid cephalopods are widely distributed in Mesozoic sediments. Due to their relative abundance and variable morphology compared with the single, bullet-shaped, belemnite rostrum, arm hooks came into the focus of micropaleontologists as a promising index fossil group for the Jurassic–Cretaceous rock record and have been the target of functional, ecological, and phylogenetic interpretations in the past. Based on three well-preserved arm crowns of the Toarcian diplobelid Chondroteuthis wunnenbergi, we analyzed the shape of a total of 87 micro-hooks. The arm crown of Chondroteuthis is unique in having uniserial rather than biserial hooks. The first application of elliptic Fourier shape analysis to the arm weapons of belemnoid coleoids allows for the distinction of four micro-hook morphotypes and the quantification of shape variation within these morphotypes. Based on the best-preserved arm crown, we reconstructed the distribution of morphotypes within the arm crown and along a single arm. Our quantitative data support former observations that smaller hooks were found close to the mouth and at the most distal arm parts, while the largest hooks were found in the central part of the arm crown. Furthermore, we found a distinct arm differentiation, as not every arm was equipped with the same hook morphotype. Here, we report the functional specialization of the belemnoid arm crown for the first time and speculate about the potential function of the four morphotypes based on comparisons with modern cephalopods. Our analyses suggest a highly adapted functional morphology and intra-individual distribution of belemnoid hooks serving distinct purposes mainly during prey capture.

Copyright © 2017 The Paleontological Society. All rights reserved 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Literature Cited

Anstey, R. L., and Delmet, D. A.. 1973. Fourier analysis of zooecial shapes in fossil tubular bryozoans. Geological Society of America Bulletin 84:17531764.Google Scholar
Benjamini, Y., and Hochberg, Y.. 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society B 57:289300.Google Scholar
Bieri, R. 1983. Function of the teeth and vestibular organ in the Chaetognatha as indicated by scanning electron microscope and other observations. Proceedings of the Biological Society of Washington 96:110114.Google Scholar
Christopher, R. A., and Waters, J. A.. 1974. Fourier series as a quantitative descriptor of miospore shape. Journal of Paleontology 48:697709.Google Scholar
Claude, J. 2008. Morphometrics with R. Springer, New York.Google Scholar
Crampton, J. S. 1995. Elliptic Fourier shape analysis of fossil bivalves: some practical considerations. Lethaia 28:179186.Google Scholar
Doguzhaeva, L. A., Summesberger, H., Mutvei, H., and Brandstaetter, F.. 2007. The mantle, ink sac, ink, arm hooks and soft body debris associated with the shells in Late Triassic coleoid cephalopod Phragmoteuthis from the Austrian Alps. Palaeoworld 16:272284.Google Scholar
Donovan, D. T., and Crane, M. D.. 1992. The type material of the Jurassic cephalopod Belemnotheutis . Palaeontology 35:273296.Google Scholar
Ehrlich, R., and Weinberg, B.. 1970. An exact method for characterization of grain shape. Journal of Sedimentary Petrology 40:205212.Google Scholar
Engeser, T. 1987. Belemnoid arm hooks (onychites) from the Swabian Jurassic—a review. Neues Jahrbuch für. Geologie und Paläontologie Abhandlungen 176:514.Google Scholar
Engeser, T. 1995. Eine neue Art der Gattung Pavloviteuthis Shimansky 1957 (Belemnoidea, Diplobelidae) aus dem Oberkimmeridgium von Süddeutschland. Stuttgarter Beiträge zur Naturkunde Serie B ( Geologie und Paläontologie) 225:111.Google Scholar
Engeser, T., and Clarke, M. R.. 1988. Cephalopod hooks, both recent and fossil. Pp. 133151 in M. R. Clarke, and E. R. Trueman, eds. The Mollusca. Academic, San Diego, Calif.Google Scholar
Engeser, T., and Reitner, J.. 1981. Beiträge zur Systematik von phragmokontragenden Coleoiden aus dem Untertithonium (Malm zeta, “Solnhofener Plattenkalk”) von Solnhofen und Eichstätt (Bayern). Neues Jahrbuch für Geologie und Paläontologie Monatshefte 1981:527545.Google Scholar
Engeser, T., and Suthhof, A.. 1992. Onychiten (Belemniten-Armhaken) aus dem Barreme von Sarstedt (Niedersachsen). Mitteilungen des Geologischen-Paläontologischen Instituts der Universität Hamburg 73:99117.Google Scholar
Fisher, R. A. 1936. The use of multiple measurements in taxonomic problems. Annals of Human Genetics 7:179188.Google Scholar
Fligner, M. A., and Killeen, T. J.. 1976. Distribution-free two-sample tests for scale. Journal of the American Statistical Association 71:210213.Google Scholar
Fuchs, D. 2006. Fossil Erhaltungsfähige Merkmalskomplexe der Coleoidea (Cephalopoda) und ihre Phylogenetische Bedeutung. Berliner Paläobiologische Abhandlungen 8:1115.Google Scholar
Fuchs, D., Boletzky, S. v., and Tischlinger, H.. 2010. New evidence of functional suckers in belemnoid coleoids (Cephalopoda) weakens support for the “Neocoleoidea” concept. Journal of Molluscan Studies 76:404406.Google Scholar
Fuchs, D., Donovan, D. T., and Keupp, H.. 2013a. Taxonomic revision of “Onychoteuthisconocauda Quenstedt, 1849 (Cephalopoda: Coleoidea). Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 270:245255.Google Scholar
Fuchs, D., Heyng, A. M., and Keupp, H.. 2013b. Acanthoteuthis problematica Naef, 1922, an almost forgotten taxon and its role in the interpretation of cephalopod arm armatures. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 269:241250.Google Scholar
Garassino, A., and Donovan, D. T.. 2000. A new family of Coleoids from the Lower Jurassic of Osteno, Northern Italy. Palaeontology 43:10191038.Google Scholar
Giardina, C. R., and Kuhl, F. P.. 1977. Accuracy of curve approximation by harmonically related vectors with elliptical loci. Computer Graphics and Image Processing 6:277285.Google Scholar
Haines, A. J., and Crampton, J. S.. 2000. Improvements to the method of Fourier shape analysis as applied in morphometric studies. Palaeontology 43:765783.Google Scholar
Hammer, Ø., Hryniewicz, K., Hurum, J. H., Hoyberget, M., Knudsen, E. M., and Nakrem, H. A.. 2013. Large onychites (cephalopod hooks) from the Upper Jurassic of the Boreal Realm. Acta Palaeontologica Polonica 58:827835.Google Scholar
Healy-Williams, N., and Williams, D. F.. 1981. Fourier analysis of test shape of planktonic Foraminifera. Nature 289:485487.Google Scholar
Hotelling, H. 1933. Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology 24:417441.Google Scholar
Jackson, G. D., and O’Shea, S.. 2003. Unique hooks in the male scaled squid Lepidoteuthis grimaldii Joubin, 1895. Journal of Marine Biological Association of the UK 83:10991100.Google Scholar
Jeletzky, J. A. 1966. Comparative morphology, phylogeny, and classification of fossil Coleoidea. University of Kansas Paleontological Contributions, Article 7:1162.Google Scholar
Kaesler, R. I., and Waters, J. A.. 1972. Fourier analysis of the ostracode margin. Geological Society of America Bulletin 83:11691178.Google Scholar
Kasatkina, A. P. 1982. Setinkochelustnyje morej SSSR i sopredel’nyh vod. Nauka, Leningrad.Google Scholar
Klug, C., Schweigert, G., Fuchs, D., and Dietl, G.. 2010. First record of a belemnite preserved with beaks, arms and ink sac from the Nusplingen Lithographic Limestone (Kimmeridgian, SW Germany). Lethaia 43:445456.Google Scholar
Klug, C., Schweigert, G., Fuchs, D., Kruta, I., and Tischlinger, H.. 2016. Adaptations to squid-style high-speed swimming in Jurassic belemnitids. Biology Letters 12:15.Google Scholar
Kruskal, W. H., and Wallis, W. A.. 1952. Use of ranks in one-criterion variance analysis. Journal of the American Statistical Association 47:583621.Google Scholar
Kuhl, F. P., and Giardina, C. R.. 1982. Elliptic Fourier features of a closed contour. Computer Graphics and Image Processing 18:236258.Google Scholar
Kulicki, C., and Szaniawski, H.. 1972. Cephalopod arm hooks from the Jurassic of Poland. Acta Palaeontologica Polonica 17:379419.Google Scholar
Leatham, W. B. 1985. Ordovician Ptiloncodus and the monogenean paradigm. Geological Society of America Abstracts with Programs 17:64.Google Scholar
Legendre, P., and Legendre, L.. 2012. Numerical ecology. Elsevier, Amsterdam.Google Scholar
Lehmann, J., Solarczyk, A., and Friedrich, O.. 2012. Belemnoid arm hooks from the Middle-Upper Albian boundary interval: taxonomy and palaeoecological significance. Paläontologische Zeitschrift 85:287302.Google Scholar
Mann, H. B., and Whitney, D. R.. 1947. On a test of whether one of two random variables is stochastically larger than the other. Annals of Mathematical Statistics 18:5060.Google Scholar
Mattheck, C., and Reuss, S.. 1991. The claw of the tiger: an assessment of its mechanical shape optimization. Journal of Theoretical Biology 150:323328.Google Scholar
Merz, R. A., and Woodin, S. A.. 2006. Polychaete chaetae: function, fossils, and phylogeny. Integrative and Comparative Biology 46:481496.Google Scholar
Mitta, V., and Bogomolov, Y.. 2014. A discovery of coleoid jaws in the Valanginian of the Russian Platform. P. 128 in C. Klug, and D. Fuchs, eds. Ninth International Symposium on Cephalopods—Present and Past in Combination with the Fifth International Symposium on Coleoid Cephalopods through Time. Paläontologisches Institut und Museum Universität Zürich, Zürich.Google Scholar
Münster, G. Graf zu. 1834. Neue Versteinerungen aus Solenhofen. Neues Jahrbuch für Mineralogie, Geognosie, Geologie und Petrefactenkunde 1834:4243.Google Scholar
Münster, G. Graf zu 1839. Acanthoteuthis, ein neues Geschlecht der Cephalopoden, zu der Familie der Loligineen oder Teuthidae (Owen) gehörend. Beiträge zur Petrefacten-Kunde 1839:9197.Google Scholar
Murdock, D. J. E., Sansom, I. J., and Donoghue, P. C. J.. 2013. Cutting the first “teeth”: a new approach to functional analysis of conodont elements. Proceedings of the Royal Society B 280:16.Google Scholar
Nixon, M. 2011. Part M, chap. 3: Anatomy of Recent forms. Treatise Online 17:149.Google Scholar
Nixon, M., and Dilly, P. N.. 1977. Sucker surfaces and prey capture. Pp. 447511. in M. Nixon, and J. B. Messenger, eds. The biology of cephalopods (Symposia of the Zoological Society of London 38). Academic, London.Google Scholar
Owen, R. 1844. A description of certain belemnites, preserved, with a great proportion of their soft parts, in the Oxford Clay at Christian Malford, Wilts. Philosophical Transactions of the Royal Society of London 134:6585.Google Scholar
Quenstedt, F. A. 1849. Petrefactenkunde Deutschlands—Der ersten Abtheilung Erster Band—Cephalopoden. Ludwig Friedrich Fues, Tübingen.Google Scholar
Quenstedt, F. A. 1856–1858. Der Jura. Laupp, Tübingen.Google Scholar
R Development Core Team. 2016. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.Google Scholar
Reich, M. 2002. Onychites (Coleoidea) from the Maastrichtian of the Isle of Rügen (Baltic Sea). Berliner Paläobiologische Abhandlungen 1:9093.Google Scholar
Reich, M., and Frenzel, P.. 1997. Onychiten (Cephalopoda, Coleoidea) aus der Schreibkreide (Unter-Maastrichtium) der Insel Rügen (Ostsee). Greifswalder Geowissenschaftliche Beiträge 4:121124.Google Scholar
Reitner, J. 1986. Acanthoteuthis leichi n. sp. (Cephalopoda) aus dem Untertithonium von Solnhofen (Bayern). Archeopteryx 1986:1925.Google Scholar
Reitner, J., and Engeser, T.. 1982. Zwei neue Coleoidea-Arten aus dem Posidonienschiefer (Untertoarcium) aus der Gegend von Holzmaden (Baden-Württemberg). Stuttgarter Beiträge zur Naturkunde Serie B (Geologie und Paläontologie) 84:119.Google Scholar
Reitner, J., and Urlichs, M.. 1983. Echte Weichteilbelemniten aus dem Untertoarcium (Posidonienschiefer) Südwestdeutschlands. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 165:450465.Google Scholar
Renaud, S., and Schmidt, D. N.. 2003. Habitat tracking as a response of the planktic foraminifer Globorotalia truncatulinoides to environmental fluctuations during the last 140 kyr. Marine Micropaleontology 49:97122.Google Scholar
Renaud, S., Michaux, J., Jaeger, J.-J., and Auffray, J.-C.. 1996. Fourier analysis applied to Stephanomys (Rodentia, Muridae) molars: nonprogressive evolutionary pattern in a gradual lineage. Paleobiology 22:255265.Google Scholar
Rieber, H. 1970. Phragmoteuthis? ticinensis n. sp., ein Coleoidea-Rest aus der Grenzbitumenzone (Mittlere Trias) des Monte San Giorgio (Kt. Tessin, Schweiz). Paläontologische Zeitschrift 44:3240.Google Scholar
Riedel, L. 1936. Ein Onychit aus dem nordwestdeutschen Ober-Hauterive. Paläontologische Zeitschrift 18:307310.Google Scholar
Riegraf, W. 1996. Belemniten-Fanghäkchen (Cephalopoda, Coleoidea) aus der Psilonotenbank (Unter Jura, tiefstes Hettangium) von Südwestdeutschland. Stuttgarter Beiträge zur Naturkunde Serie B (Geologie und Paläontologie) 239:138.Google Scholar
Rohlf, F. J., and Archie, J. W.. 1984. A comparison of Fourier methods for the description of wing shape in mosquitoes (Diptera: Culicidae). Systematic Biology 33:302317.Google Scholar
Shapiro, S. S., and Wilk, M. B.. 1965. An analysis of variance test for normality (complete samples). Biometrika 52:591611.Google Scholar
Shimodaira, H. 2002. An approximately unbiased test of phylogenetic tree selection. Systematic Biology 51:492508.Google Scholar
Shimodaira, H. 2004. Approximately unbiased tests of regions using multistep-multiscale bootstrap resampling. Annals of Statistics 32:26162641.Google Scholar
Stevens, G. R. 2010. Palaeobiological and morphological aspects of Jurassic Onychites (cephalopod hooks) and new records from the New Zealand Jurassic. New Zealand Journal of Geology and Geophysics 53:395412.Google Scholar
Thompson, D. A. W. 1917. On growth and form. Cambridge University Press, Cambridge.Google Scholar
Tibshirani, R., Walther, G., and Hastie, T.. 2001. Estimating the number of clusters in a data set via the gap statistic. Journal of the Royal Statistical Society B 63:411423.Google Scholar
Urlichs, M., Wild, R., and Ziegler, B.. 1994. Der Posidonien-Schiefer und seine Fossilien. Stuttgarter Beiträge zur Naturkunde Serie C 36:195.Google Scholar
Van Bocxlaer, B., and Schultheiß, R.. 2010. Comparison of morphometric techniques for shapes with few homologous landmarks based on machine-learning approaches to biological discrimination. Paleobiology 36:497515.Google Scholar
Yezerinac, S. M., Lougheed, S. C., and Handford, P.. 1992. Measurement error and morphometric studies: Statistical power and observer experience. Systematic Biology 41:471482.Google Scholar
Young, R. E., Vecchione, M., and Donovan, D. T.. 1998. The evolution of coleoid cephalopods and their present biodiversity and ecology. In A. I. L. Payne, M. R. Lipinski, M. R. Clarke, and M. A. C. Roeleveld, eds. Cephalopod biodiversity, ecology and evolution. South African Journal of Marine Science 20:393420.Google Scholar
Zelditch, M. L., Swiderski, D. L., and Sheets, H. D.. 2012. Geometric morphometrics for biologists: a primer. Academic, London.Google Scholar