Hostname: page-component-758b78586c-qvhcc Total loading time: 0 Render date: 2023-11-29T18:18:17.350Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "useRatesEcommerce": true } hasContentIssue false

Macroevolutionary patterns of body plan canalization in euarthropods

Published online by Cambridge University Press:  05 October 2020

Cédric Aria*
Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, OntarioM5S3B2, Canada; Department of Natural History (Palaeobiology Section), Royal Ontario Museum, Toronto, OntarioM5S2C6, Canada; and State Key Laboratory of Palaeobiology and Stratigraphy & Center for Excellence in Life and Palaeoenvironment, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing210008, China. E-mail:


Reconstructing patterns of macroevolution has become a central endeavor in paleobiology, because it offers insight into evolutionary models shaping the history of life. As the most diverse and abundant animals since the Cambrian period, arthropods provide copious data to elucidate the emergence of body plans in metazoan lineages. However, information provided by fossils on the tempo and mode of this phenomenon has lacked a recent synthesis. Here, I investigate macroevolutionary patterns of morphological evolution in Euarthropoda using a combined extinct and extant dataset optimized for multivariate analyses. Overall ordination patterns between the main morphogroups are consistent with another, independently coded, extant-only dataset providing molecular and morphological rates of evolution. Based on a “deep split” phylogenetic framework, total-group Mandibulata and Arachnomorpha emerge as directional morphoanatomical lineages, with basal fossil morphogroups showing heterogeneously spread-out occupations of the morphospace. In addition to a more homogeneous morphological variation, new morphogroups arose by successive reductions of translation distances; this pattern was interrupted only by terrestrialization events and the origin of pancrustaceans. A displaced optimum type of model is proposed to explain the fast assembly of canalized body plans during the Cambrian, with basal fossil morphogroups fitting intermediate fitness peaks in a moving adaptive landscape. Given time constraints imposed by the paleontological evidence, and owing to the interplay between canalization and modularity, as well as a decoupling between molecular and morphological rates, the rise of euarthropods would support the view that the swiftness of the Cambrian explosion was mostly associated with the buildup of genetic regulatory networks.

Copyright © The Author(s), 2020. Published by Cambridge University Press on behalf of The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



Present address: 8, rue de la Fonderie, 68100 Mulhouse, France.

Data available from the ORCID Digital Repository:


Literature Cited

Alroy, J. 2010. The shifting balance of diversity among major marine animal groups. Science 329:11911194.CrossRefGoogle ScholarPubMed
Aria, C. 2019. Reviewing the bases for a nomenclatural uniformization of the highest taxonomic levels in arthropods. Geological Magazine 156:14631468.CrossRefGoogle Scholar
Aria, C., and Caron, J.-B.. 2015. Cephalic and limb anatomy of a new isoxyid from the Burgess Shale and the role of “stem bivalved arthropods” in the disparity of the frontalmost appendage. PLoS ONE 10:e0124979.CrossRefGoogle ScholarPubMed
Aria, C., and Caron, J.-B.. 2017a. Burgess Shale fossils illustrate the origin of the mandibulate body plan. Nature 545:8992.CrossRefGoogle Scholar
Aria, C., and Caron, J.-B.. 2017b. Mandibulate convergence in an armoured Cambrian stem chelicerate. BMC Evolutionary Biology 17:261.CrossRefGoogle Scholar
Aria, C., and Caron, J. B.. 2019. A middle Cambrian arthropod with chelicerae and proto-book gills. Nature 573:586589.CrossRefGoogle ScholarPubMed
Aria, C., Caron, J.-B., and Gaines, R.. 2015. A large new leanchoiliid from the Burgess Shale and the influence of inapplicable states on stem arthropod phylogeny. Palaeontology 58:629660.CrossRefGoogle Scholar
Bambach, R. K. 2006. Phanerozoic biodiversity mass extinctions. Annual Review of Earth and Planetary Sciences 34:127155.CrossRefGoogle Scholar
Barton, R. A., and Harvey, P. H.. 2000. Mosaic evolution of brain structure in mammals. Nature 405:10551058.CrossRefGoogle ScholarPubMed
Braddy, S. J., and Almond, J. E.. 1999. Eurypterid trackways from the Table Mountain Group (Ordovician) of South Africa. Journal of African Earth Sciences 29:165177.CrossRefGoogle Scholar
Briggs, D. E. G., and Fortey, R. A.. 2005. Wonderful strife: systematics, stem groups, and the phylogenetic signal of the Cambrian radiation. Paleobiology 31:94112.CrossRefGoogle Scholar
Briggs, D. E. G., Fortey, R. A., and Wills, M. A.. 1992. Morphological disparity in the Cambrian. Science 256:16701673.CrossRefGoogle ScholarPubMed
Brusatte, S., Graeme, T., Wang, S., and Norell, M.. 2014. Gradual assembly of avian body plan culminated in rapid rates of evolution across the dinosaur-bird transition. Current Biology 24:23862392.CrossRefGoogle ScholarPubMed
Budd, G. E., and Jensen, S.. 2000. A critical reappraisal of the fossil record of the bilaterian phyla. Biological Reviews 75:253295.CrossRefGoogle ScholarPubMed
Budd, G. E., and Mann, R. P.. 2019. Modeling durophagous predation and mortality rates from the fossil record of gastropods. Paleobiology 45:246264.CrossRefGoogle Scholar
Caron, J.-B., and Aria, C.. 2017. Cambrian suspension-feeding lobopodians and the early radiation of panarthropods. BMC Evolutionary Biology 17:29.CrossRefGoogle ScholarPubMed
Caron, J. B., Rudkin, D. M., and Milliken, S.. 2004. A new late Silurian (Pridolian) naraoiid (Euarthropoda: Nektaspida) from the Bertie Formation of Southern Ontario-Delayed fallout from the Cambrian Explosion. Journal of Paleontology 78:11381145.CrossRefGoogle Scholar
Carreira, V. P., Soto, I. M., Mensch, J., and Fanara, J. J.. 2011. Genetic basis of wing morphogenesis in Drosophila: sexual dimorphism and non-allometric effects of shape variation. BMC Developmental Biology 11:32.CrossRefGoogle ScholarPubMed
Chen, X., Ling, H. F., Vance, D., Shields-Zhou, G. A., Zhu, M., Poulton, S. W., Och, L. M., Jiang, S. Y., Li, D., Cremonese, L., and Archer, C.. 2015. Rise to modern levels of ocean oxygenation coincided with the Cambrian radiation of animals. Nature Communications 6:7142.CrossRefGoogle ScholarPubMed
Ciampaglio, C. N., Kemp, M., and McShea, D. W.. 2001. Detecting changes in morphospace occupation patterns in the fossil record: characterization and analysis of measures of disparity. Paleobiology 27:695715.2.0.CO;2>CrossRefGoogle Scholar
Collette, J. H., and Hagadorn, J. W.. 2010. Early evolution of phyllocarid arthropods: phylogeny and systematics of Cambrian-Devonian archaeostracans. Journal of Paleontology 84:795820.CrossRefGoogle Scholar
Collette, J. H., Hagadorn, J. W., and Lacelle, M. A.. 2010. Dead in their tracks—Cambrian arthropods and their traces from intertidal sandstones of Quebec and Wisconsin. Palaios 25:475486.CrossRefGoogle Scholar
Cracraft, J. 1970. Mandible of Archaeopteryx provides an example of mosaic evolution. Nature 226:12681268.CrossRefGoogle ScholarPubMed
Crane, P. R. 2013. Ginkgo: the tree that time forgot. Yale University Press, New Haven, Conn.Google Scholar
Cunningham, J. A., Liu, A. G., Bengtson, S., and Donoghue, P. C. J.. 2017. The origin of animals: can molecular clocks and the fossil record be reconciled? BioEssays 39:112.CrossRefGoogle ScholarPubMed
Daley, A. C., Antcliffe, J. B., Drage, H. B., and Pates, S.. 2018. Early fossil record of Euarthropoda and the Cambrian explosion. Proceedings of the National Academy of Sciences USA 115:53235331.CrossRefGoogle ScholarPubMed
Davidson, E. H. 2010. Emerging properties of animal gene regulatory networks. Nature 468:911920.CrossRefGoogle ScholarPubMed
de Visser, J. A., Hermisson, J., Wagner, G. P., Meyers, L. Ancel, Bagheri-Chaichian, H., Blanchard, J. L., Chao, L., Cheverud, J. M., Elena, S. F., Fontana, W., Gibson, G., Hansen, T. F., Krakauer, D., Lewontin, R. C., Ofria, C., Rice, S. H., von Dassow, G., Wagner, A., and Whitlock, M. C.. 2003. Perspective: evolution and detection of genetic robustness. Evolution 57:19591972.Google ScholarPubMed
Ding, S. M., Wang, S. P., He, K., Jiang, M. X., and Li, F.. 2017. Large-scale analysis reveals that the genome features of simple sequence repeats are generally conserved at the family level in insects. BMC Genomics 18:ar848.CrossRefGoogle ScholarPubMed
Dunlop, J. A., and Lamsdell, J. C.. 2016. Segmentation and tagmosis in Chelicerata. Arthropod Structure and Development 46:395418.CrossRefGoogle ScholarPubMed
Eble, G. J. 2000. Contrasting evolutionary flexibility in sister groups: disparity and diversity in Mesozoic atelostomate echinoids. Paleobiology 26:5679.2.0.CO;2>CrossRefGoogle Scholar
Edgecombe, G. D., and Morgan, H.. 1999. Synaustrus and the euthycarcinoid puzzle. Alcheringa 23:193213.CrossRefGoogle Scholar
Edgecombe, G. D., Strullu-Derrien, C., Góral, T., Hetherington, A. J., Thompson, C., and Koch, M.. 2020. Aquatic stem group myriapods close a gap between molecular divergence dates and the terrestrial fossil record. Proceedings of the National Academy of Sciences USA 117:89668972.CrossRefGoogle Scholar
Erwin, D. H. 2007. Disparity: morphological pattern and developmental context. Palaeontology 50:5773.CrossRefGoogle Scholar
Erwin, D. H., Valentine, J., and Jablonski, D.. 1997. The origin of animal body plans. American Scientist 85:126137.Google Scholar
Erwin, D. H., Laflamme, M., Tweedt, S. M., Sperling, E. A., Pisani, D., and Peterson, K. J.. 2011. The Cambrian conundrum: early divergence and later ecological success in the early history of animals. Science 334:10911097.CrossRefGoogle ScholarPubMed
Estes, S., and Arnold, S. J.. 2007. Resolving the paradox of stasis: models with stabilizing selection explain evolutionary divergence on all timescales. American Naturalist 169:227244.CrossRefGoogle ScholarPubMed
Feist, R. 1991. The late Devonian trilobite crises. Historical Biology 5:197214.CrossRefGoogle Scholar
Fernandez, R., Edgecombe, G. D., and Giribet, G.. 2016. Exploring phylogenetic relationships within Myriapoda and the effects of matrix composition and occupancy on phylogenomic reconstruction. Systematic Biology 65:871889.CrossRefGoogle ScholarPubMed
Foote, M. 1989. Perimeter-based Fourier-analysis - a new morphometric method applied to the trilobite cranidium. Journal of Paleontology 63:880885.CrossRefGoogle Scholar
Foote, M. 1993. Contributions of individual taxa to overall morphological disparity. Paleobiology 19:403419.CrossRefGoogle Scholar
Foote, M. 1994. Morphological disparity in Ordovician–Devonian crinoids and the early saturation of morphological space. Paleobiology 20:320344.CrossRefGoogle Scholar
Foote, M. 1997. The evolution of morphological diversity. Annual Review of Ecology and Systematics 28:129152.CrossRefGoogle Scholar
Fortey, R. A., Briggs, D. E. G., and Wills, M. A.. 1996. The Cambrian evolutionary “explosion”: decoupling cladogenesis from morphological disparity. Biological Journal of the Linnean Society 57:1333.Google Scholar
Friedman, M., and Coates, M. I.. 2006. A newly recognized fossil coelacanth highlights the early morphological diversification of the clade. Proceedings of the Royal Society of London B 273:245250.Google ScholarPubMed
Frontier, S. 1976. Decrease of eigenvalues in principal component analysis—comparison with broken stick model. Journal of Experimental Marine Biology and Ecology 25:6775.CrossRefGoogle Scholar
Garwood, R. J., Dunlop, J. A., Selden, P. A., Spencer, A. R. T., Atwood, R. C., Vo, N. T., and Drakopoulos, M.. 2016. Almost a spider: a 305-million-year-old fossil arachnid and spider origins. Proceedings of the Royal Society of London B 283:20160125.Google ScholarPubMed
Gerber, S., and Hopkins, M. J.. 2011. Mosaic heterochrony and evolutionary modularity: the trilobite genus Zacanthopsis as a case study. Evolution 65:32413252.CrossRefGoogle ScholarPubMed
Gingerich, P. D. 2001. Rates of evolution on the time scale of the evolutionary process. Genetica 112–113:127–44.CrossRefGoogle ScholarPubMed
Giribet, G., and Edgecombe, G. D.. 2019. The phylogeny and evolutionary history of arthropods. Current Biology 29:R592R602.CrossRefGoogle ScholarPubMed
Gould, S. J. 1989. Wonderful life: the burgess shale and the nature of history. Norton, New York.Google Scholar
Gould, S. J. 1991. The disparity of the Burgess Shale arthropod fauna and the limits of cladistic-analysis—why we must strive to quantify morphospace. Paleobiology 17:411423.CrossRefGoogle Scholar
Haug, J. T., Mayer, G., Haug, C., and Briggs, D. E. G.. 2012. A Carboniferous non-onychophoran lobopodian reveals long-term survival of a Cambrian morphotype. Current Biology 22:16731675.CrossRefGoogle ScholarPubMed
Hopkins, M. J. 2017. How well does a part represent the whole? A comparison of cranidial shape evolution with exoskeletal character evolution in the trilobite family Pterocephaliidae. Palaeontology 60:309318.CrossRefGoogle Scholar
Hopkins, M. J., and Smith, A. B.. 2015. Dynamic evolutionary change in post-Paleozoic echinoids and the importance of scale when interpreting changes in rates of evolution. Proceedings of the National Academy of Sciences USA 112:37583763.CrossRefGoogle ScholarPubMed
Hughes, M., Gerber, S., and Wills, M. A.. 2013. Clades reach highest morphological disparity early in their evolution. Proceedings of the National Academy of Sciences USA 110:1387513879.CrossRefGoogle ScholarPubMed
Hughes, N. C. 1991. Morphological plasticity and genetic flexibility in a Cambrian trilobite. Geology 19:913916.2.3.CO;2>CrossRefGoogle Scholar
Hughes, N. C. 2003. Trilobite body patterning and the evolution of arthropod tagmosis. BioEssays 25:386395.CrossRefGoogle ScholarPubMed
Jefferies, R. P. S. 1979. The origin of chordates—a methodological essay. Pp. 443477 in House, M. R., ed. The origin of the major invertebrate groups. Academic Press, London.Google Scholar
Kemp, T. S. 2007. The origin of higher taxa: macroevolu tionary processes, and the case of the mammals. Acta Zoologica 88:322.CrossRefGoogle Scholar
Klussmann-Fricke, B. J., and Wirkner, C. S.. 2016. Comparative morphology of the hemolymph vascular system in Uropygi and Amblypygi (Arachnida): complex correspondences support Arachnopulmonata. Journal of Morphology 277:10841103.CrossRefGoogle ScholarPubMed
Kraaijeveld, K. 2010. Genome size and species diversification. Evolutionary Biology 37:227233.CrossRefGoogle ScholarPubMed
Kühl, G., Briggs, D. E. G., and Rust, J.. 2009. A great-appendage arthropod with a radial mouth from the lower Devonian Hunsrück Slate, Germany. Science 323:771773.CrossRefGoogle ScholarPubMed
Kühl, G., Bergmann, A., Dunlop, J. A., Garwood, R. J., and Rust, J.. 2012. Redescription and palaeobiology of Palaeoscorpius devonicus Lehmann, 1944 from the Lower Devonian Hunsrück slate of Germany. Palaeontology 55:775787.CrossRefGoogle Scholar
Labandeira, C. C. 2005. The fossil record of insect extinction: new approaches and future directions. American Entomologist 51:1429.CrossRefGoogle Scholar
Labandeira, C. C., and Sepkoski, J. J.. 1993. Insect diversity in the fossil record. Science 261:310315.CrossRefGoogle ScholarPubMed
Lee, M. S. Y., Soubrier, J., and Edgecombe, G. D.. 2013. Rates of phenotypic and genomic evolution during the Cambrian explosion. Current Biology 23:18891895.CrossRefGoogle ScholarPubMed
Legg, D. A., Sutton, M. D., and Edgecombe, G. D.. 2013. Arthropod fossil data increase congruence of morphological and molecular phylogenies. Nature Communications 4:2485.CrossRefGoogle ScholarPubMed
Lewis, P. O. 2001. A likelihood approach to estimating phylogeny from discrete morphological character data. Systematic Biology 50:913925.CrossRefGoogle ScholarPubMed
Linz, D. M., and Tomoyasu, Y.. 2018. Dual evolutionary origin of insect wings supported by an investigation of the abdominal wing serial homologs in Tribolium. Proceedings of the National Academy of Sciences USA 115:E658E667.CrossRefGoogle ScholarPubMed
Lloyd, G. T. 2016. Estimating morphological diversity and tempo with discrete character-taxon matrices: implementation, challenges, progress, and future directions. Biological Journal of the Linnean Society 118:131151.CrossRefGoogle Scholar
Lozano-Fernandez, J., Reis, M. Dos, Donoghue, P. C. J., and Pisani, D.. 2017. RelTime rates collapse to a strict clock when estimating the timeline of animal diversification. Genome Biology and Evolution 9:13201328.CrossRefGoogle ScholarPubMed
MacNaughton, R. B., Cole, J. M., Dalrymple, R. W., Braddy, S. J., Briggs, D. E. G., and Lukie, T. D.. 2002. First steps on land: arthropod trackways in Cambrian–Ordovician eolian sandstone, southeastern Ontario, Canada. Geology 30:391394.2.0.CO;2>CrossRefGoogle Scholar
Marshall, C. R. 2006. Explaining the Cambrian “explosion” of animals. Annual Review of Earth and Planetary Sciences 34:355384.CrossRefGoogle Scholar
Niklas, K. J. 1994. Morphological evolution through complex domains of fitness. Proceedings of the National Academy of Sciences USA 91:67726779.CrossRefGoogle Scholar
Oakley, T. H., Wolfe, J. M., Lindgren, A. R., and Zaharoff, A. K.. 2013. Phylotranscriptomics to bring the understudied into the fold: monophyletic ostracoda, fossil placement, and pancrustacean phylogeny. Molecular Biology and Evolution 30:215233.CrossRefGoogle ScholarPubMed
Paterson, J. R., Edgecombe, G. D., and Lee, M. S. Y.. 2019. Trilobite evolutionary rates constrain the duration of the Cambrian explosion. Proceedings of the National Academy of Sciences USA 116:43944399.CrossRefGoogle ScholarPubMed
Peters, S. E., and Gaines, R. R.. 2012. Formation of the “Great Unconformity” as a trigger for the Cambrian explosion. Nature 484:363366.CrossRefGoogle ScholarPubMed
Peterson, K. J., Dietrich, M. R., and McPeek, M. A.. 2009. MicroRNAs and metazoan macroevolution: insights into canalization, complexity, and the Cambrian explosion. BioEssays 31:736747.CrossRefGoogle ScholarPubMed
Raup, D. M. 1972. Taxonomic diversity during the Phanerozoic. Science 177:10651071.CrossRefGoogle ScholarPubMed
R Core Team. 2019. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.Google Scholar
Regier, J. C., Shultz, J. W., Zwick, A., Hussey, A., Ball, B., Wetzer, R., Martin, J. W., and Cunningham, C. W.. 2010. Arthropod relationships revealed by phylogenomic analysis of nuclear protein-coding sequences. Nature 463:10791098.CrossRefGoogle ScholarPubMed
Retallack, G. J. 2008. Cambrian–Ordovician non-marine fossils from South Australia. Alcheringa 33:355391.CrossRefGoogle Scholar
Rohlf, F. J. 1998. On applications of geometric morphometrics to studies of ontogeny and phylogeny. Systematic Biology 47:147158.CrossRefGoogle ScholarPubMed
Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Hohna, S., Larget, B., Liu, L., Suchard, M. A., and Huelsenbeck, J. P.. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61:539542.CrossRefGoogle ScholarPubMed
Rota-Stabelli, O., Campbell, L., Brinkmann, H., Edgecombe, G. D., Longhorn, S. J., Peterson, K. J., Pisani, D., Philippe, H., and Telford, M. J.. 2011. A congruent solution to arthropod phylogeny: phylogenomics, microRNAs and morphology support monophyletic Mandibulata. Proceedings of the Royal Society of London B 278:298306.Google ScholarPubMed
Rudkin, D. M., Cuggy, M. B., Young, G. A., and Thompson, D. P.. 2013. An Ordovician pycnogonid (sea spider) with serially subdivided “head” region. Journal of Paleontology 87:395405.CrossRefGoogle Scholar
Schlosser, G. 2002. Modularity and the units of evolution. Theory in Biosciences 121:180.CrossRefGoogle Scholar
Schwentner, M., Combosch, D. J., Nelson, J. P., and Giribet, G.. 2017. A phylogenomic solution to the origin of insects by resolving crustacean-hexapod relationships. Current Biology 27:17.CrossRefGoogle ScholarPubMed
Sepkoski, J. J. 1984. A kinetic-model of Phanerozoic taxonomic diversity. 3. Post-Paleozoic families and mass extinctions. Paleobiology 10:246267.CrossRefGoogle Scholar
Sharma, P. P., Kaluziak, S. T., Perez-Porro, A. R., Gonzalez, V. L., Hormiga, G., Wheeler, W. C., and Giribet, G.. 2014. Phylogenomic interrogation of arachnida reveals systemic conflicts in phylogenetic signal. Molecular Biology and Evolution 31:29632984.CrossRefGoogle ScholarPubMed
Simpson, G. G. 1944. Tempo and mode in evolution. Columbia University Press, New York.Google Scholar
Siveter, D. J., Briggs, D. E. G., Siveter, D. J., Sutton, M. D., and Legg, D.. 2018. A three-dimensionally preserved lobopodian from the Herefordshire (Silurian) Lagerstätte, UK. Royal Society Open Science 5:172101.CrossRefGoogle ScholarPubMed
Sørensen, T. J. 1948. A method of establishing groups of equal amplitude in plant sociology based on similarity of species content and its application to analyses of the vegetation on Danish commons. I kommission hos E. Munksgaard, Copenhagen.Google Scholar
True, J. R., and Carroll, S. B.. 2002. Gene co-option in physiological and morphological evolution. Annual Review of Cell and Developmental Biology 18:5380.CrossRefGoogle ScholarPubMed
Vaccari, N. E., Edgecombe, G. D., and Escudero, C.. 2004. Cambrian origins and affinities of an enigmatic fossil group of arthropods. Nature 430:554557.CrossRefGoogle ScholarPubMed
Valentine, J. W. 1973. Evolutionary paleoecology of the marine biosphere. Prentice Hall, Englewood Cliffs, N.J.Google Scholar
Valentine, J. W. 2004. On the origin of phyla. University of Chicago Press, Chicago.Google Scholar
Vannier, J., Aria, C., Taylor, R. S., and Caron, J.-B.. 2018. Waptia fieldensis Walcott, a mandibulate arthropod from the middle Cambrian Burgess Shale. Royal Society Open Science 5:172206.CrossRefGoogle ScholarPubMed
Van Roy, P., Orr, P. J., Botting, J. P., Muir, L. A., Vinther, J., Lefebvre, B., el Hariri, K., and Briggs, D. E. G.. 2010. Ordovician faunas of Burgess Shale type. Nature 465:215218.CrossRefGoogle ScholarPubMed
Waddington, C. H. 1942. Canalization of development and the inheritance of acquired characters. Nature 150:563565.CrossRefGoogle Scholar
Wagner, A. 1996. Does evolutionary plasticity evolve? Evolution 50:10081023.CrossRefGoogle ScholarPubMed
Wagner, G. P., Pavlicev, M., and Cheverud, J. M.. 2007. The road to modularity. Nature Reviews Genetics 8:921931.CrossRefGoogle ScholarPubMed
Webster, M. 2007. A Cambrian peak in morphological variation within trilobite species. Science 317:499502.CrossRefGoogle ScholarPubMed
Webster, M., and Zelditch, M. L.. 2011. Evolutionary lability of integration in Cambrian ptychoparioid trilobites. Evolutionary Biology 38:144162.CrossRefGoogle Scholar
Wills, M. A., Briggs, D. E. G., and Fortey, R. A.. 1994. Disparity as an evolutionary index—a comparison of Cambrian and Recent arthropods. Paleobiology 20:93130.CrossRefGoogle Scholar
Wilson, H. M., and Anderson, L. I.. 2004. Morphology and taxonomy of Paleozoic millipedes (Diplopoda: Chilognatha: Archipolypoda) from Scotland. Journal of Paleontology 78:169184.2.0.CO;2>CrossRefGoogle Scholar
Wray, G. A. 2007. The evolutionary significance of cis-regulatory mutations. Nature Review Genetics 8:206216.CrossRefGoogle ScholarPubMed
Yin, C. L., Shen, G. Y., Guo, D. H., Wang, S. P., Ma, X. Z., Xiao, H. M., Liu, J. D., Zhang, Z., Liu, Y., Zhang, Y. Q., Yu, K. X., Huang, S. Q., and Li, F.. 2016. InsectBase: a resource for insect genomes and transcriptomes. Nucleic Acids Research 44:D801D807.CrossRefGoogle ScholarPubMed