Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-30T04:22:45.034Z Has data issue: false hasContentIssue false

Predation on fossil and Recent ophiuroids

Published online by Cambridge University Press:  08 April 2016

Richard B. Aronson*
Affiliation:
Department of Pure & Applied Zoology, University of Reading, Whiteknights, Reading RG6 2AJ, England

Abstract

The frequency of sublethal damage was examined in two ophiuroid species, Palaeocoma milleri and ?Ophioderma tenuibrachiata (Ophiodermatidae), from a shallow-water Jurassic “starfish bed.” None of 60 specimens was regenerating arms, a result that agrees with four previous studies of Paleozoic and early Mesozoic ophiuroids. By contrast, 66.1 percent of a living Ophioderma brevispinum population from Belize were regenerating one or more arms. For living populations of Ophiothrix oerstedi, the natural injury frequency was high at sites where the field mortality of tethered individuals was high. All predators that have been observed feeding on ophiuroids cause sublethal injuries, which would appear as regenerating arms in the fossil record. These results support the hypothesis that predation pressure on ancient ophiuroid populations was low and increased after the Jurassic.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Arkell, W. J. 1956. Jurassic Geology of the World. Oliver and Boyd; Edinburgh. 806 pp.Google Scholar
Aronson, R. B. 1985. Ecological release in a Bahamian saltwater lake: Octopus briareus (Cephalopoda) and Ophiothrix oerstedii (Ophiuroidea). Ph.D. Dissertation. Harvard Univ. 240 pp.Google Scholar
Aronson, R. B. and Harms, C. A. 1985. Ophiuroids in a Bahamian saltwater lake: the ecology of a Paleozoic-like community. Ecology 66:14721483.Google Scholar
Aronson, R. B. and Sues, H.-D. 1987. The paleoecological significance of an anachronistic ophiuroid community. Pp. 355366. In: Kerfoot, W. C. and Sih, A., eds. Predation: Direct and Indirect Impacts on Aquatic Communities. University Press of New England; Hanover, NH.Google Scholar
Bambach, R. K. 1985. Classes and adaptive variety: the ecology of diversification in marine faunas through the Phanerozoic. Pp. 191253. In: Valentine, J. W., ed. Phanerozoic Diversity Patterns: Profiles in Macroevolution. Princeton Univ. Press; Princeton.Google Scholar
Bowmer, T. and Keegan, B. F. 1983. Field survey of the occurrence and significance of regeneration in Amphiura filiformis (Echinodermata: Ophiuroidea) from Galway Bay, west coast of Ireland. Mar. Biol. 74:6571.Google Scholar
Brun, E. 1972. Food and feeding habits of Luidia ciliaris. J. Mar. Biol. Ass. U.K. 52:225236.Google Scholar
Christiansen, A. M. 1970. Feeding biology of the sea-star Astropecten irregularis Pennant. Ophelia. 8:1134.Google Scholar
Collette, B. B. and Earle, S. A., eds. 1972. Results of the Tektite Program: Ecology of Coral Reef Fishes. Nat. Hist. Mus. L.A. Cty. Sci. Bull. 14. 179 pp.Google Scholar
Cox, D. R. and Oakes, D. 1984. Analysis of Survival Data. Chapman and Hall; London. 201 pp.Google Scholar
Duineveld, G. C. A. and van Noort, G. J. 1986. Observations on the population dynamics of Amphiura filiformis (Ophiuroidea: Echinodermata) in the southern North Sea and its exploitation by the dab, Limanda limanda. Neth. J. Sea Res. 20:8594.Google Scholar
Frakes, L. A. 1979. Climates Throughout Geologic Time. Elsevier; Amsterdam. 316 pp.Google Scholar
Goldring, R. and Stephenson, D. G. 1972. The depositional environment of three starfish beds. N. Jb. Geol. Paläont., Mh. 1972:611624.Google Scholar
Gorzula, S. J. F. 1976. The ecology of Ophiocomina nigra (Abildgaard) in the Firth of Clyde. Ph.D. Dissertation. Univ. of London. 218 pp.Google Scholar
Hendler, G. 1984. The association of Ophiothrix lineata and Callyspongia vaginalis: a brittlestar-sponge cleaning symbiosis? P.S.Z.N. I: Mar. Ecol. 5:927.Google Scholar
Hess, H. 1960. Neubeschreibung von Geocoma elegans (Ophiuroidea) aus dem unteren Callovien von La Voulte sur Rhône (Ardèche). Eclogae Geol. Helv. 53:335384.Google Scholar
Hess, H. 1964. Die Ophiuren des englischen Jura. Eclogae Geol. Helv. 57:775802.Google Scholar
Holme, N. A. 1984. Fluctuations of Ophiothrix fragilis in the western English Channel. J. Mar. Biol. Ass. U.K. 64:351378.Google Scholar
Kesling, R. V. and Le Vasseur, D. 1971. Strataster ohioensis, a new Early Mississippian brittle-star, and the paleoecology of its community. Contrib. Mus. Paleont. Univ. Mich. 23:305341.Google Scholar
Lehmann, W. M. 1951. Anomalien und Regenerationserscheinungen an paläozoischen Asterozoen. N. Jb. Geol. Paläont., Abh. 93:401416.Google Scholar
Meyer, C. A. 1984. Palökologie und Sedimentologie der Echinodermenlagerstätte Schofgraben (mittleres Oxfordian, Weissenstein, Kt. Solothurn). Eclogae Geol. Helv. 77:649673.Google Scholar
Meyer, D. L. 1985. Evolutionary implications of predation on Recent comatulid crinoids from the Great Barrier Reef. Paleobiology. 11:154164.Google Scholar
Randall, J. E. 1967. Food habits of reef fishes of the West Indies. Stud. Trop. Oceanogr. 5:665847.Google Scholar
Rützler, K. and Macintyre, I. G., eds. The Atlantic Barrier Reef Ecosystem at Carrie Bow Cay, Belize. I. Structure and Communities. Smithsonian Institution Press; Washington, DC. 539 pp.Google Scholar
Schoener, T. W. 1979. Inferring the properties of predation and other injury-producing agents from injury frequencies. Ecology. 60:11101115.Google Scholar
Sides, E. M. 1982. Estimates of partial mortality for eight species of brittle-stars. P. 327. In: Lawrence, J. M., ed. International Echinoderms Conference, Tampa Bay. A.A. Balkema; Rotterdam.Google Scholar
Vermeij, G. J. 1977. The Mesozoic marine revolution: evidence from snails, predators and grazers. Paleobiology. 3:245258.CrossRefGoogle Scholar
Vermeij, G. J. 1982. Unsuccessful predation and evolution. Am. Nat. 120:701720.Google Scholar
Vermeij, G. J. 1983. Shell-breaking predation through time. Pp. 649669. In: Tevesz, M. J. S. and McCall, P. L., eds. Biotic Interactions in Recent and Fossil Benthic Communities. Plenum; New York.CrossRefGoogle Scholar
Vermeij, G. J., Schindel, D. E., and Zipser, E. 1981. Predation through geologic time: evidence from gastropod shell repair. Science. 214:10241026.CrossRefGoogle ScholarPubMed
Warner, G. F. 1971. On the ecology of a dense bed of the brittlestar Ophiothrix fragilis. J. Mar. Biol. Ass. U.K. 51:267282.Google Scholar
Williams, M. J. 1982. Natural food and feeding of the commercial sand crab Portunis pelagicus Linnaeus, 1766 (Crustacea: Decapoda: Portunidae) in Moreton Bay, Queensland. J. Exp. Mar. Biol. Ecol. 59:165176.Google Scholar
Witman, J. D. 1985. Refuges, biological disturbance, and rocky subtidal community structure in New England. Ecol. Monogr. 55:421445.Google Scholar
Woodley, J. D., Chornesky, E. A., Clifford, P. A., Jackson, J. B. C., Kaufman, L. S., Knowlton, N., Lang, J. C., Pearson, M. P., Porter, J. W., Rooney, M. C., Rylaarsdam, K. W., Tunnicliffe, V. I., Wahle, C. M., Wulff, J. L., Curtis, A. S. G., Dallmeyer, M. D., Jupp, B. P., Koehl, M. A. R., Neigel, J., and Sides, E. M. 1981. Hurricane Allen's impact on Jamaican coral reefs. Science. 214:749755.Google Scholar